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ABSTRACT OF THE DISSERTATION 

Flexible Management of Transportation Networks under Uncertainty 

By 

Joseph Ying Jun Chow 

Doctor of Philosophy in Civil Engineering 

University of California, Irvine, 2010 

Professor Amelia C. Regan and Professor R. Jayakrishnan, Co-Chairs 

 

Strategies, models, and algorithms facilitating such models are explored to provide 

transportation network managers and planners with more flexibility under uncertainty.  

Network design problems with non-stationary stochastic OD demand are formulated as 

real option investment problems and dynamic programming solution methodologies are 

used to obtain the value of flexibility to defer and re-design a network.  The design 

premium is shown to reflect the opportunity cost of committing to a “preferred 

alternative” in transportation planning.  Both network option and link option design 

problems are proposed with solution algorithms and tested on the classical Sioux Falls, 

SD network.  Results indicate that allowing individual links to be deferred can have 

significant option value.   

A resource relocation model using non-stationary stochastic variables as chance 

constraints is proposed.  The model is applied to air tanker relocation for initial attack of 

wildfires in California, and results show that the flexibility to switch locations with non-
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stationary stochastic variables providing 3-day or 7-day forecasts is more cost-effective 

than relocations without forecasting. 

Due to the computational costs of these more complex network models, a faster 

converging heuristic based on radial basis functions is evaluated for continuous network 

design problems for the Anaheim, CA network with a 31-dimensional decision variable.  

The algorithm is further modified and then proven to converge for multi-objective 

problems.  Compared to other popular multi-objective solution algorithms in the 

literature such as the genetic algorithm, the proposed multi-objective radial basis 

function algorithm is shown to be most effective. 

The algorithm is applied to a flexible robust toll pricing problem, where toll 

pricing is proposed as a strategy to manage network robustness over multiple regimes 

of link capacity uncertainty.  A link degradation simulation model is proposed that uses 

multivariate Bernoulli random variables to simulate correlated link failures.  The solution 

to a multi-objective mean-variance toll pricing problem is obtained for the Sioux Falls 

network under low and high probability seasons, showing that the flexibility to adapt 

the Pareto set of toll solutions to changes in regime – e.g. hurricane seasons, security 

threat levels, etc – can increase value in terms of an epsilon indicator. 
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“Suppose that at each session, Congress shall first determine how much money can, for 

that year, be spared for improvements; then apportion that sum to the most important 

objects. So far all is easy; but how shall we determine which are the most important?” – 

Abraham Lincoln 

 

CHAPTER 1 INTRODUCTION 

 

 

Network design models have long been used to aid decision-makers in making 

investments on networks where the benefits cannot be clearly evaluated, such as in 

transportation planning.  Decision-makers need to evaluate the success of their 

decisions using other “social benefit” measures, such as network link connection costs, 

or total vehicle-hours traveled.  However, the change in today’s environment is 

outgrowing the utility of the tools and strategies available to public decision-makers.   

Lockwood (2005) expressed the primary problem in today’s transportation 

agencies succinctly: “The inherited culture of today’s transportation agencies is 

dominated by facility development and preservation.  Changes are required if state and 
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local agencies are to have a significant impact on the characteristic 21
st

 century mobility 

problems of congestion, unreliability, and insecurity”. 

Mobility and accessibility certainly drove the goals of the Eisenhower 

administration in establishing the interstate highway system in 1956.  However, the 

deeper problems suggested by Lockwood are the result of a maturing system and a 

more complex economic, political, and social environment.  Early transportation agency 

leaders who focused almost solely on facility development and preservation could not 

have foreseen the need to deal with the complex issues of terrorist attacks or 

environmental justice.  In the last two decades the need to transform the traditional 

transportation agency into an actively managing organization has received significant 

interest from both academic researchers and policy makers.  

Logi (1999) and Mattingly (2000) showed that managing congestion can be much 

more effective when there is a more rational decision-making framework in place with 

better coordination between multiple decision-makers.  Chung (2007) showed that 

mathematical models can be used effectively to manage non-recurrent congestion 

caused by accidents.  Yang (2008) developed a concrete decision-making framework for 

evaluating truck management strategies such as lane restrictions, truck-only lanes, and 

virtual weigh stations.  Apivatanagul (2008) illustrated the benefit of applying network 

design models to freight planning. 

Whereas in the past an agency’s primary objective was to allocate its budget to 

minimize travel costs in its network, today the same agency needs to manage a mature 

network to address other operational goals such as flexibility or robustness.  These goals 
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arise from more attention being placed on the transportation network because of issues 

such as fluctuating gas prices, natural disasters, and terrorist attacks.   

 

 

1.1 MOTIVATION 

 

The inadequacies of the state of practice are presented below using anecdotal 

examples.  To avoid confusion, we begin by defining what we mean by network 

management.  For the purposes of this research, network management is an act of 

control upon a system of connected nodes, arcs, and users with a goal of supporting the 

general welfare of the users over time.  Whether this management requires long term 

planning, investment, or risk mitigation; short term pricing or resource allocation; or 

anything in between is subject to the decisions of the managing agent. 

 Although many kinds of networks exist, the focus in this body of work is on 

physical transportation networks traversed by people.   These transportation networks 

are distinguished from other types such as electrical networks or utility networks by the 

different scale of capital costs; the longer time frame for arc traversal (and hence the 

focus on travel times between origin-destination (OD) pairs rather than on link 

capacities or bandwidth); and the ability of the travelers to make their own choices.   

 The examples shown below (and consequently the objectives of this research) 

represent a range of strategies available to a transportation network managing agent: 
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investment planning, resource allocation, and risk mitigation.  Some of the terminology 

used is briefly discussed here but will be introduced in more detail in later chapters. 

 

1.1.1 Investment Planning 

Problems can be identified in the planning practice taken by many of the transportation 

agencies in the United States.  Major investment projects at various local or regional 

agencies are generally undertaken with some level of federal funding.  These 

investments are planned using Major Investment Studies (MIS), which provide 

information on costs and benefits for multiple alternatives.  Decisions on which projects 

to undertake are often made at the local level.  Investment projects are driven by long 

term (25 year) Regional Transportation Plans (RTP) for each metropolitan planning 

organization (MPO).  Short term (3 year) federal funding needs are prioritized in 

transportation improvement programs (TIP).  The day-to-day operational scheduling and 

programming of tasks is developed in the Unified Work Program for Transportation 

(UWP) on an annual basis. (FHWA, 2008)    

The MPO’s for three of the largest cities in the U.S. include the New York 

Metropolitan Transportation Council (NYMTC), Southern California Association of 

Governments (SCAG), and the Chicago Metropolitan Agency for Planning (CMAP).  The 

RTP’s of these MPO’s provide forecasts of performance measures up to the projected 

time horizon, so there is some measurable visibility to the improvements from the plans’ 

projects based on travel demand models.   
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However, projects are typically listed based on the cost of the preferred 

alternative instead of also providing conditional alternatives (SCAG RTP 2008, NYMTC 

RTP 2005, CMAP RTP 2008).  As such, there are no conditional branches based on 

uncertainties in the environment, such as origin-destination (OD) demand or transit 

ridership, prices of materials, interest rate fluctuations, funding availability and size, or 

the impact of external policies on freight flows such as fuel taxes. 

This problem of uncertainty in investment planning could be alleviated using a 

corporate finance technique called real options.  It is essentially a dynamic programming 

method that evaluates a decision to choose between multiple operating modes given an 

asymmetric cost to switch between modes and stochastic value of the investment 

return over time.   

Garvin and Cheah (2004) examine the benefit of a real options approach to the 

infrastructure investment industry, using a case study of the Dulles Greenway toll 

project in the 1990’s as an example where the deferral option would have added more 

value to the decision-makers’ investment.   

In the case study, the planning agency initially estimated a demand of 20,000 

vehicles per day for the first year of operation.  Using traditional discounted cash flow 

approach, the static net present value (NPV) would have been -$86.3M.  However, real 

option analysis would include the value of deferral, resulting in an adjusted value of         

-$86.3M + $111.8M = $25.5M.  The static NPV approach should have suggested that the 

agency forego the project altogether.  The real option approach would have informed 

the agency that there is potential value ($25.5M), but much of it is from deferring the 
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investment ($111.8M) and gathering more information on the uncertain elements such 

as the daily traffic flow.   

It turned out the actual initial volumes were as low as 10,000 vehicles per day, 

forcing the agency to take more loans to cover their expenses.  A real option approach 

at the beginning of the design or project approval period would have allowed the 

agency to time their investment better.   

Furthermore, Garvin and Cheah’s case study did not explicitly consider the value 

of alternative designs.  If a network design approach was taken to estimate the value 

from users, then there would have been additional value from the flexibility to redesign 

the solution due to deferral.  The investment opportunity could have exceeded $25.5M, 

where any difference would represent the value of NOT committing to their preferred 

alternative. 

 

1.1.2 Resource Allocation 

Resource allocation is a management tactic that can be applied at many different time 

frames.  Long term planning examples include locating facilities to maximize the 

performance of a system, or even the proper allocation of funds to invest in new 

infrastructure.  Short term operational examples include allocating green time to 

signalized intersections along certain congested corridors or positioning incident 

management assets to minimize the clearance time of a non-recurring incident. 

 Resource allocation for incident management in urban transportation networks 

can involve mitigating the impacts of accidents on freeways and arterials, and can also 



www.manaraa.com

7 

 

be applied to regional networks – for example, locating mobile resources to prevent 

wild fires.   

Recent fires in Southern California dealt a devastating blow to the environment 

and the population in 2007.  In San Diego County alone, the fires “claimed ten lives, 

destroyed more than 1,700 homes, burned more than 300 square miles and forced the 

evacuation of an estimated 500,000 people” (USA Today, Feb 19, 2008).  A recent Los 

Angeles Times article (Boxall, December 31, 2008) claims that the cost of combating 

wildland fires in California now exceeds $1 billion. 

This type of headline is becoming ever-more prominent, and the fire situation is 

likely to worsen in the future.  In Rapp’s (2004) study, nation-wide climate trends were 

modeled using annual data from 1895 to the present day and forecasted for the next 

100 years.  Results indicate that the southwestern United States will have wetter 

winters and warmer summers, leading to more woodland growth in the forests and 

more grass in the desert regions.  These conditions will increase the risk of fire 

outbreaks. 

Efficient fire and forestry management will only become more crucial over time.  

In California, this role is handled by the Department of Forestry and Fire Protection 

(CDF). The state is divided into 21 units under its control and 6 other counties in which 

fire protection is handled under individual private contracts.  Fire protection plans 

developed by the agency involve stakeholder contributions, priorities, strategic areas for 

pre-fire planning and fuel treatment plans for local regions.   
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When the Santa Ana winds in Southern California caused a second major fire 

outbreak in Malibu in 2007, hundreds of firefighters and equipment from throughout 

the state were available to deploy to the region for a week in response to predictions 

about the winds (KNBC, 2007).  On the other hand, fire authorities had insufficient 

resources at their disposal during the first outbreak several weeks prior, and needed to 

request last minute aid from neighboring regions.  There is no systematic operational 

level model which uses daily fire weather data to optimally re-deploy resources. 

If resource allocations can be actively managed using updated data and models 

that forecast near-term future conditions, decision-makers would be able to adapt their 

strategies and improve efficiencies.  These improvements in efficiency can be measured 

and quantified as the value of pre-positioning resources based on potential future 

alternatives. 

 

1.1.3 Risk Mitigation 

Sheffi (2001) made a timely statement shortly after the events of 9/11 about how the 

western world is being ushered into a new era where large scale disruptions may occur.  

Using supply chain management as an example, he discusses the need for firms to juggle 

between two objectives: the traditional goal of minimizing cost with just-in-time 

inventory versus the need to maintain “just-in-case” inventory as well.  Choosing only 

one leaves an organization more vulnerable to the effects of the other. 

 While the audience of the article was the corporate world, the message applies 

to the public sector as well: in the last ten years, the world has experienced other 
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disruptions to the infrastructure from man-made acts of terror or conflict as well as 

natural disasters: Hurricane Katrina, the Indian Ocean Tsunami 2004, the 2005 London 

train bombings, the Northeast Blackout of 2003… the list goes on.  In each case, the 

center of attention is the transportation or infrastructure network and how well it can 

cope with the additional stress on the system. 

The complexity of managing transportation networks has increased significantly.  

Transportation planners and operational managers cannot focus solely on improving the 

efficiency of their networks for transporting people and goods; they must also heed 

other objectives such as minimizing environmental impacts or minimizing the sensitivity 

of the system’s performance to uncertainties in supply and demand.  Uncertainties in 

supply can arise from random incidents, such as an accident or a flood that closes off a 

roadway.  Other uncertainties can arise from continual road deterioration, power 

failures affecting train operation, security threats, and more. 

Certain network strategies are more applicable to managing risk with flexibility 

than others.  For example, adding capacity to road networks is an irreversible 

investment that is difficult to adapt short term strategies to time-dependent 

uncertainties.  On the other hand, some strategies such as adjusting ramp metering, 

signalization, or toll pricing can be used to adapt readily to new information on the state 

of a network.   

By placing a toll on particular links or cordons in a network, it is possible for 

network managers to redirect traffic to reduce congestion throughout a network.  In 

fact, there are a number of successful implementations of pricing schemes in cities such 
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as Singapore, London, and Stockholm (Tsekeris and Voβ, 2008).  However, there has 

been no research examining how toll pricing can be used to actively manage a network 

against uncertainties such as capacity degradation.  Like the trade-off that supply chain 

managers need to make between minimizing cost and minimizing risk of loss, there 

exists a trade-off that can be made by network managers.   

 

 

1.2 OBJECTIVE OF STUDY 

 

The objective of this research is to apply innovative models and methodologies to 

improve upon flexible transportation network management strategies.  As the anecdotal 

examples show, there is an inadequacy in the state of the practice in the way 

transportation networks can be managed under a setting of uncertainty.  A number of 

different problem settings are explored with different ranges of flexibility strategies in 

the dissertation to provide decision-makers with a toolbox for flexible management of 

transportation networks.  The bottom line is to incorporate adaptive decision-making 

using real option concepts to network-based managerial problems.  A broad framework 

shown in FIGURE 1-1 is used to capture this toolbox.  

The framework draws on de Neufvile’s (2000) concept of a dynamic strategic 

planning for transportation networks and uses the definition of flexibility by Morlok and 

Chang (2004).  These concepts are discussed in more detail in Chapter 2.  Traditional 

network models and tools can be integrated with real options using the framework, 
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which relates an objective to the uncertainties of concern, the setting of the n

the network controls available to the agent, and the type of option strategies 

represented in the strategies. 

   

FIGURE 1-1. A framework for flexible transportation network management.
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1.3 RESEARCH SUMMARY 

 

This dissertation research examines several key aspects of flexible management of 

transportation networks under uncertainty and proposes new models and methods to 

support effective network design strategies.  On the surface these proposed models 

may not appear to share much in common, but they support a framework that focuses 

on adaptive management of network resources based on gathering data and explicitly 

considering uncertainty. 

 In Chapter 2, the literature related to the role of network design models and real 

options in handling network-based strategies under uncertainty is explored.  The review 

provides a background on the elements particular to the flexible transportation network 

management framework. 

 In Chapter 3, three network design-based option models are proposed.  First, a 

network investment deferral option (NIDO) model is introduced to measure the option 

value of a network design investment with the option to defer.  Second, a network 

option design problem (NODP) is proposed where the link investments are allocated to 

maximize the option value of a committed network design.  Third, the network design is 

decomposed into individual, interacting link options as an ordered link investment 

deferral option set (OLIDOS).  In this third model, the problem is to determine which 

links to invest immediately and which to defer, given a committed order to investing in 

them.  Solution algorithms are proposed for the three models and applied to the classic 
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example network of Sioux Falls, SD.  A discussion of the solution algorithms and detailed 

analysis reveals the powerful capabilities available to an agent.   

Chapter 3’s option-based formulations and solutions represent long term 

planning in an urban freeway setting with non-stationary OD demand, using options to 

incorporate flexibility through deferral, design, and link interaction strategies. 

 Chapter 4 focuses on the value obtained from estimating time series data as a 

stochastic process for use in mobile server relocation problems.  A resource relocation 

model is presented to show that incorporating predictive data in a resource relocation 

model can result in more cost effective relocation strategies because of the existence of 

hysteresis due to asymmetric relocation costs and high volatility in the demand.   The 

model is applied to air tanker relocations in initial attacks against wild fires throughout 

California.   

Chapter 4 features short-term resource allocation where the demand is derived 

from indices characterized as non-stationary mean-reverting processes.  The setting is a 

regional transport network without congestion effects.  The strategy is facility relocation 

representing the flexibility of changing the positions of resources based on the indices. 

 Chapter 5 focuses on the issue of computational efficiency with the need for 

globally optimal performance.  A review of a relatively new global optimization 

algorithm based on radial basis functions is conducted.  The algorithm is tested on a 

continuous network design problem to show that it would perform much more 

efficiently than the more traditional genetic algorithm approach.  This algorithm is 

tested on both the Sioux Falls network under different congestion levels and the larger 
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Anaheim, CA network.  Furthermore, the algorithm is modified and proven to handle 

multi-objective problems.  The resulting MO-RBF algorithm is tested against results from 

the literature and shown to be very effective in comparison. 

 Chapter 6 examines the robust optimization problem for an urban road network 

as a tool for managing network robustness under different regimes or seasons of 

capacity uncertainty.  A capacity degradation simulation model is proposed using 

multivariate Bernoulli random variables to represent link failure occurrences.  The multi-

objective algorithm proposed in Chapter 5 is used to solve a robust toll pricing problem 

with two objectives: maximizing expected social welfare versus minimizing variance of 

social welfare.  The value of flexibility is quantified in terms of an epsilon indicator due 

to a change in the Pareto set in response to a change in scenario regime or season.  The 

performance of the algorithm is tested on the Sioux Falls network to illustrate how an 

agent can incorporate flexibility into their robustness strategy.     

Chapter 6 investigates the use of the toll pricing design strategy as a risk 

mitigation objective under stationary uncertainties in an urban freeway network, where 

the flexibility lies in being able to adapt a set of Pareto optimal robust toll prices to 

transitions in the uncertainties in link capacities from one mode, or regime, to another. 

 Chapter 7 ties all the pieces together and presents the contributions in terms of 

the framework.  Future work is discussed. 
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1.4 RESEARCH CONTRIBUTIONS 

 

The primary contributions of the research are summarized in the bullets below. 

• By considering a network design with non-stationary stochastic OD demand as 

an option deferral problem, the solution incorporates the value to defer and to 

re-design the network as a function of the volatility in demand. 

• The value of the network design premium is shown to represent the opportunity 

cost of giving up alternative designs when a transportation planner adopts a 

“preferred alternative”. 

• A network design problem is proposed to allocate funding to links to maximize 

its option value.   

• A network design is shown to be a set of interacting link options, and when each 

is considered separately as an investment option the value can increase 

significantly.  By committing the ordering of the link investments, the resulting 

model can be solved using a multi-option simulation algorithm.   

• When time series data is characterized as a non-stationary stochastic process, it 

can provide additional information for network design problems in the form of 

chance constraints.  This incorporation of chance constraints can be viewed as an 

explicit consideration of flexibility such as the hysteresis effect when positioning 

resources over time.  This formulation of the resource relocation model is shown 

to perform better than a relocation model that does not make use of such 

forecasting. 
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• A radial basis function-based global optimization method is shown to be faster 

converging than the genetic algorithm for continuous network design problems 

for networks with up to 31 link investments. 

• Modifications to the algorithm are made to allow it to solve multi-objective 

problems directly to obtain a Pareto optimal frontier.  The algorithm is proven to 

converge and shown to be more efficient than existing multi-objective 

algorithms. 

• A model of correlated link capacity degradation is developed that can be 

simulated with Monte Carlo methods. 

• The value of flexibility in adapting a robust network design Pareto solution is 

quantified using an epsilon indicator.  This value is used to illustrate toll pricing 

as a tool for managing network robustness with flexibility to adapt to changing 

regimes. 

 

The implications of these findings are that the real option methodologies can bridge the 

gap between evolving public sector objectives and private sector tools and methods.  

They provide planners with a way of analytically considering uncertainty that can be 

visible to the public and to the decision-makers.  A whole new area of research in 

network management using real option tools can evolve from this research to respond 

to the challenge posed by Mr. Lockwood shown in the beginning of the chapter. 

 Although the relocation modeling is set in a wildfire setting, the contribution has 

significant implications in many other related areas.  For example, management of non-
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recurring incidents using real time traffic data can benefit from this development, 

although the relocation cost modeling would become more complex due to the 

congested links.  The contribution can also benefit research in airline industries (flight 

delays from weather), freight delivery (multiple vehicle routing), and supply chain 

management (safety stock). 

 The modifications made to the earlier algorithm development pushes the radial 

basis function optimization method in new directions, particularly as a faster global 

solution method than more popular choices such as genetic algorithms or simulated 

annealing for network design models.  In particular, the algorithm has been fine-tuned 

to handle multi-objective problems, which will find new applications in many areas. 

 The capacity degradation simulation and flexible robust optimization research 

offers a fresh take on an established network management strategy.  Further 

applications in robust optimization, multi-objective problems, and other related 

network design problems can benefit significantly from this research. 
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“Doing dynamic strategic planning is comparable to playing chess: the planner thinks 

many moves ahead, but only commits to one move at a time” – Richard de Neufville 

 

CHAPTER 2 NETWORK-BASED REAL OPTIONS REVIEW 

 

 

As discussed, the goals of a transportation management agency have changed over the 

last few decades.  This is true in a general sense as well; as de Neufville (2000) put it, the 

evolution of systems analysis has shifted from systems optimization in the 1970’s, to 

decision analysis in the 1980’s, to what he calls dynamic strategic planning in the current 

time.  Dynamic strategic planning focuses on two primary aspects: the need to account 

for uncertainties, and the need to account for decision-makers.   

 This growing paradigm can be seen in transportation network management 

(TNM) as well.  Many of the analytical tools used in TNM have evolved to reflect this 

trend, particularly network design models. 
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2.1 NETWORK DESIGN 

 

Network design is a method of optimizing some objective in a network by making 

changes to the network structure.  Besides the numerous types of networks that exist, it 

is frequently advantageous to think of many non-network problems using network 

structures (e.g. scheduling and supply chains). 

 Given a graph G of a set of nodes N, a set of links or arcs A, and a set of 

commodities M, subject to a set of constraints S, a network design problem (NDP) can 

be defined with the following generalized formulation shown in Magnanti and Wong 

(1984): 

 

minimize �(�, �)          (2.1) 

subject to 

∑ ��	
	∈� − ∑ �	�
�∈� = � �
 �� � = �(�)−�
 �� � = �(�), ∀ � ∈ �0 ��ℎ���� �
!     (2.2) 

��	
 ≡ ∑ ��	

∈# ≤ ��	��	 , ∀(�, %) ∈ &        (2.3) 

(�, �) ∈ '          (2.4) 

��	
 ≥ 0, ��	 = 0 �� 1, ∀ (�, %) ∈ &, � ∈ �         (2.5) 

 

Where x is the link flow for each commodity m, y is the design vector, Rm is the amount 

of the commodity located at each supply node. 
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 The versatility of this model can be seen in the variety of related sub-problems 

derived from the formulation.  For example, the objective can be defined as equation 

2.6 (Ahuja et al, 1993): 

 

minimize �(�, �) = ∑ *
�

∈# + ,-�       (2.6) 

 

Where y is a vector of links selected for design or construction, and d is the link design 

or construction cost vector.  If Rm = 1 for all m and ��	
 ≤ ��	 for all (i,j), this becomes an 

uncapacitated NDP. 

 

2.1.1. Bi-Level Network Design 

When congestion effects need to be accounted for, bi-level formulations are necessary, 

where the interaction of the design and link flow vectors with the objective leads to two 

separate problems.  Although the design vector y is under the control of the decision-

making agency, the behavior of the link flows x are typically not under their control.  

Using the formulation from the survey paper of Yang and Bell (1998): 

 

min1  �2(�(�), �)          (2.7) 

subject to '2(�(�), �) ≤ 0         (2.8) 
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where x(y) is implicitly defined by the following lower level problem: 

 

min3  �4(�, �)          (2.9) 

subject to '4(�, �) ≤ 0         (2.10) 

 

A thorough review of the different traffic equilibrium principles and solution methods 

can be found in Sheffi (1985), while a review of different types of bi-level urban network 

design problems and solution methods are available in Yang and Bell (1998) and recently 

in Apivatanagul (2008). 

 Among the bi-level NDP’s, two distinct classes can be found: the discrete NDP 

(LeBlanc, 1975) where links or link components are counted as binary design variables, 

and the continuous NDP (CNDP) (Abdulaal and LeBlanc, 1979), where the capacity or 

other continuous link component can be improved incrementally.  Variations of the bi-

level NDP’s such as signal timing (Ceylan and Bell, 2004), toll pricing (Yang and Bell, 

1997), mass transport (Pagès et al, 2006), ramp metering, and reserve capacity can fall 

into one or the other class. 

 

2.1.2. Network Design under Dynamic Strategic Planning Paradigm 

With the shift to dynamic strategic planning, NDP’s have evolved as well.  Different 

objectives such as social and spatial equity (Yang and Zhang, 2002) consider a more 

heterogeneous set of users.  Wei and Schonfeld (1994) solve a multi-period discrete 

network design staging problem using a neural network.  Given a set of links, the 
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problem is to determine the set of links as well as the time to invest in each such that 

the total travel costs over multiple periods are minimized, given that the demand is 

deterministic.   

 There is an abundant literature dealing with uncertainty in the many areas of 

network design, far more than can be described exhaustively here.  Instead, some key 

research is mentioned among both the MILP’s and the more complex bi-level problems.  

The examples mentioned below are mostly based on stationary stochastic variables, 

especially the bi-level problems.   Unlike non-stationary stochastic processes where the 

probability distribution may evolve over time, a stationary stochastic variable has a fixed 

probability distribution.  While stationary stochastic variables are simpler to solve, they 

cannot always reflect the dynamic strategies available to decision-makers over time.   

 Shu et al (2005) integrate the uncapacitated facility location model with an 

inventory problem under stochastic demand.  Snyder et al (2007) extend this work to a 

generalized scenario approach that can account for discrete pseudo-non-stationary 

stochastic demand.  In their model, stochastic demand can be modeled as a set of 

scenarios where each scenario represents a different year with different probability 

distribution of demand.  The solution assigns locations for facilities in the initial time, 

and inventory policies are subject to change year to year.  Snyder et al show that this 

stochastic location model with risk pooling (SLMRP) formulation can be solved with a 

Lagrangian-relaxation-based exact algorithm.   

Although the demand would appear to be non-stationary with regards to the 

facility location decision variables, the retailer assignment and inventory management 
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within each scenario has no foresight of near-term future demand because the 

formulation deterministically assigns parameters to each scenario with no dynamic 

updating.  In other words, the demand is not truly an adapted process because the 

assignment at time t does not have better knowledge of where demand will be at time 

t+1.  This model is sufficient if the cost of re-assigning retailers and inventory levels 

between years is negligible, but not if such reassignment incurs a significant cost.  

Chapter 4 explores this idea with a mobile server relocation problem using non-

stationary stochastic demand. 

 Waller and Zilliaskopoulos (2001) and Chen and Yang (2004) approach the CNDP 

with stationary stochastic demand. The first assumes system optimal behavior to obtain 

an exact solution to the chance-constrained dynamic traffic assignment problem.  The 

latter assumes user equilibrium behavior, but solves the CNDP with a heuristic genetic 

algorithm.  Both objectives seek to minimize the expected value, or the first moment, of 

the objective function.   

Karoonsoontawong and Waller (2007) consider higher moments with a robust 

formulation where the objective includes both the expected value and the variance of 

stationary stochastic variables.  Robust optimization is covered in more detail in Chapter 

6.   

Sumalee et al (2006) model the NDP with an objective to maximize reliability of 

the total travel time.  Reliability is defined in their paper as the probability that total 

network travel time falls below a threshold value.  Naturally, their model could be 

extended to include a number of different reliability measures.  Li et al (2007) explore 
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optimal toll design with a reliability objective to examine a policy of using toll pricing to 

manage network reliability.   

Whether the uncertainty is stationary or non-stationary, the solutions to the bi-

level models above represent a static decision made at a single point in time.  On the 

other hand, the SLMRP model serves as a good example of a model that can adapt to 

new information over time.   

 

2.1.3. Flexibility 

Morlok and Chang (2004) define flexibility as “the ability of a system to adapt to 

external changes, while maintaining satisfactory system performance”.  They also define 

external changes as “uncontrolled conditions that affect the system, including changes 

in level of demand or use, shifts in spatial traffic patterns, infrastructure loss and 

degradation, and changes in the price and availability of important resources such as 

fuel, etc.”   

Patil and Ukkusuri (2007) consider a flexible network design problem (FNDP) 

where the demand evolves as a non-stationary geometric Brownian motion.  The idea is 

to allow the design to adapt to new conditions and to account for those possibilities by 

characterizing the non-stationary uncertainty with a stochastic process.  However, they 

formulate the problem as a staging design problem with an adapted stochastic process 

(i.e. at any point in time, only the past is revealed). 

Damnjanovic et al (2008) consider network flexibility from a different angle.  

They model the network design problem as a stationary stochastic program with 
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recourse for the purpose of obtaining the value of recourse for a network compared to 

the same problem without recourse.  While they do not use non-stationary uncertainty, 

they make use of the broad concept of real options in terms of measuring the value of 

flexibility for the purpose of decision-making under uncertainty.  Among their 

conclusions is the idea to extend their work to multi-stage situations in which the next 

stage recourse would be nested in the previous stage structure. 

The existing literature suggests that flexibility can be used to address network 

design models under uncertainty.  It also reveals the complexity of such problems, 

especially the urban problems with a bi-level structure.  However, in the world of 

corporate finance the concept of real options has grown significantly in the last few 

years as a tool for extending flexibility to projects under uncertainty.  The solution 

methodologies developed in this field can be applied to network design models to 

establish a dynamic TNM framework where flexibility of strategies can be quantified and 

optimized. 

 

 

2.2 REAL OPTIONS 

 

Before defining real options, it is important to understand financial options.  This is 

because the mechanics of real options are based on financial options, although the 

meaning of each type of option is very different from one other.   
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2.2.1 Financial Options 

In finance, a call (put) option is a contract that one can purchase to give the owner the 

right to buy (sell) a stock at a specific target, or strike, price.  There are many different 

kinds of options, but two kinds can be distinguished by the manner with which they can 

be exercised: a European option allows an owner to exercise the option only on the 

expiration date at some time T, whereas an American style option allows the owner to 

exercise the option at any time up to T.  The following example is obtained from Hull 

(2006) and expanded upon. 

 Suppose an investor is interested in purchasing shares of Intel stock.  At the end 

of May, its price is at $20.83.  If there is no uncertainty at all and the stock price follows 

a deterministic path, then the option to purchase the stock at $22.50 by October should 

be determined by the deterministic growth rate.  Assuming compound interest, the 

value of the stock at time t should be: 

 

'(�) = '5�67           (2.11) 

 

Where S0 would be the initial price and ρ would be the interest or discount rate.  

Assuming it is a monthly interest rate for this example, then a ρ = 1.54% or lower would 

indicate a stock price that would be less than or equal to $22.50 by October.  A contract 

to purchase the stock at $22.50 until October under the low interest rate would be 

worthless because the investor can just buy the stock for cheaper before that expiration 

date.   
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On the other hand, a higher ρ that would lead to a deterministic value of $23.00 

by October should be worth $0.50 because the investor could then exercise the contract 

in October to buy the stock at $22.50 and sell it at $23.00 for a $0.50 profit.  This is 

assuming there is no arbitrage in the market, i.e. no such thing as a free lunch, because 

if the contract was cheaper it would be bought up and sold at $0.50 for a profit. 

The value of options as a tool for hedging risk comes when uncertainty is 

introduced.  FIGURE 2-1 shows two scenarios.  In the Stock scenario, the investor 

chooses to purchase 100 shares of Intel stock, and their profit can range from -$2083 

(the amount that they spent to purchase 100 shares at $20.83) or up to $1917 if the 

stock price hits $40.  Depending on the volatility of the stock, the downside risk can be 

tremendous.   

On the other hand, the same investor can purchase a contract to buy 100 shares 

of Intel stock that expire in October at the strike price of $22.50.  Let’s assume that the 

price of this option is $1.15 per share, or $115 for the 100 share contract.  Then they are 

risking at most $115 (because if the price dips below a profitable value, the investor can 

choose not to exercise the option), but can stand to gain up to $1635 given an 

equivalent comparison of a $40 stock price.  As the example illustrates, options are a 

form of insurance to manage risk under a highly volatile environment.  As volatility 

increases, the value of insurance should increase as well, leading to a relationship 

between the underlying uncertainty defining the stock price and its option value. 
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FIGURE 2-1 Comparison of stock purchase versus option exercise under uncertainty. 

 

2.2.2 Stochastic Processes 

To quantify this relationship between the option value and a stock price under 

uncertainty, the uncertainty needs to be defined as a measurable function over time.  

For the remainder of this section, stochastic processes are discussed from a continuous 

time perspective for consideration of closed form methods in Section 2.2.5. 

 As per Dixit and Pindyck (1994), a stochastic process is defined as “a variable that 

evolves over time in a way that is at least in part random”.  A non-stationary stochastic 

process is one where the distribution may change over time.  An important concept is 

whether a process is adapted.  Karatzas and Shreve (1998) define it as follows. 

 

Definition 2.1. The stochastic process X is adapted to the filtration 8ℱ7: if, for each � ≥
0, Xt is an ℱ7-measurable random variable.   
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This means that an adapted stochastic process has a time dependent probability 

distribution that is based only on current and prior information at time t, and nothing 

afterwards.  The definition is needed because it implies decision-makers that depend on 

adapted stochastic processes do not know what will happen in the future but have up-

to-date information. 

 A basic building block for adapted processes is a Wiener process, also commonly 

called a Brownian motion.  Dixit and Pindyck highlight three important properties that 

define a Wiener process: 

1. A Wiener process is a Markov process, i.e. future probability distributions 

depend only on the current value; 

2. A Wiener process has independent increments, i.e. probability distributions for 

the change in the process for two non-overlapping time periods are assumed 

independent of each other; 

3. An increment of the Wiener process over a finite time interval is normally 

distributed with a variance that increases linearly with the interval. 

Given that definition, a generalized Brownian motion or Ito process x can be defined as 

follows. 

 

,� = ;(�, �),� + <(�, �),=        (2.12) 
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Where dW is an increment in a Wiener process and a(x,t) and b(x,t) are non-random 

functions.  If a and b are constants, the resulting Brownian motion has an expected 

value of >?�|; = α, < = σC = D�5�, a variance E?�|; = α, < = σC = σ4�, and it follows 

a normal distribution.  More complex forms of a and b can be solved by using Ito’s 

Lemma, a form of Taylor series expansion, to transform the stochastic process into a 

differential equation. 

 Two common forms of the Ito process are the geometric Brownian motion with 

drift and the Ornstein-Uhlenbeck mean-reverting process.  The geometric Brownian 

motion with drift is defined by Dixit and Pindyck as: 

 

,� = α�,� + σ�,=         (2.13) 

 

Where the expected value of x(t) is >?�(�)C = �5�F7 and the variance is E?�(�)C =
�54�4F7(eHIJ − 1).  The distribution of the increment is lognormal, and it is commonly 

used for many variables that have a compound or exponential growth rate.  FIGURE 2-2 

illustrates one sample path of realization for a variable that follows a geometric 

Brownian motion and shows how the parameters of the process can be used to define 

an expected future trajectory from a current time along with a confidence interval. 

 The model introduced in Chapter 3 assumes the demand for each OD pair 

follows geometric Brownian motion. 
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FIGURE 2-2. Example of geometric Brownian motion. 

 

The Ornstein-Uhlenbeck (O-U) process, in its simplest form without drift can be defined 

as follows: 

 

,� = η(μ − �),� + σ,=        (2.14) 

 

Where η is a rate of reversion towards the mean value µ.  The fire weather indices in 

Chapter 4 are characterized as simple O-U processes.  Many more types of processes 

exist, including Poisson jump processes for modeling discrete events with a mean arrival 

rate.   
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2.2.3 Types of Real Options 

Recall the example from FIGURE 2-1.  In the example, a financial option can hedge risk 

by mitigating downside loss.  In strategic management, a decision-maker can assess the 

value of their decisions using the method of discounted cash flow to consider all their 

alternatives with equivalent units of present time value, or net present value (NPV).  

However, the NPV is the equivalent of immediately committing to the stock in the 

example in FIGURE 2-1, where the consequence of a strategic decision would be subject 

to the outcomes of uncertainty in the future. 

In real life strategic planning, a decision-maker does not make static decisions 

and follow through with them regardless of intermediate outcomes.  Instead, they 

incorporate flexibility into their planning by using current information to adjust their 

plans over time.  However, the NPV method of evaluation does not reflect this behavior, 

just like a stock purchase would not reflect the manner with which an investor can 

maintain an option to purchase a stock to minimize risk of loss.  A real option doesn’t so 

much as hedge the risk in the same fashion as a financial option; instead, it is a construct 

used to model flexible decision-making behavior so that it can quantify the value of 

flexibility under uncertainty. 

Real options cannot be treated in the same manner as financial options because 

of several differences.  First of all, they cannot be traded as securities like financial 

options.  Much of the value of financial options is due to the ability to trade them as 

much as it is to exercise them.  Whereas a stock purchase is fairly liquid in the sense that 

it can be traded at any time, the other key difference is that many strategic decisions 
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face highly asymmetric reversal costs.  The condition of irreversibility in strategic 

management is where real options gain most of their value as a tool for quantifying 

flexibility for optimal dynamic decision-making over time under uncertainty.   

Another major difference is that financial options are typically derived directly 

from a single stock’s price; however, the value of an asset in real options may be a 

function of multiple d-dimensional variables, making it much more complex to resolve.  

For example, in the transportation examples the social welfare may be the objective 

value to maximize, but it is a function of equilibrium conditions due to stochastic OD 

demand or capacity. 

Trigeorgis (1996) presents a framework for using real options in strategic 

management by expanding on the NPV: 

 

>�M;N,�, OPE = OPE + �M���N M����Q�     (2.15) 

 

The NPV is expanded upon by incorporating the option premium, which represents the 

value due to options that a static NPV analysis would not be able to capture.  Benaroch 

and Kauffman (2000) present a clear comparison of this valuation versus traditional 

discounted cash flow method as well as basic decision tree analysis in FIGURE 2-3.   

They argue that real options offer two incentives for strategic management: 1) 

real options can model payoff contingencies using probability distribution functions so 

that the presence of an option can translate to expectations of shifts in the distribution; 

and 2) they can replace the actual probabilities of payoffs by risk-neutral probabilities to 
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facilitate discounting by a risk-free rate instead of the risk-adjusted rate.  For the 

purposes of this research, all the decision-makers are assumed to be risk-neutral to 

focus on the decision-making under uncertainty instead. 

 

 

FIGURE 2-3. Comparison of different strategic evaluation methods. (Benaroch and Kauffman, 

2000) 

 

Luehrman (2001) makes a very intuitive argument for how real options can enhance 

strategic management from basic discounted cash flow analysis.  He illustrates how the 

option space region expands from only zones A and C in FIGURE 2-4 for a static NPV 

analysis to the six regions using real options analysis (ROA) instead.  Traditional TNM 
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strategies confined to “now” or “never” can be expanded to include “maybe no

“probably later”, “maybe later”, and “probably never”, depending on volatility and NPV.

 

FIGURE 2-4. Expansion of NPV to ROA. (Luehrman, 2001)
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the framework provided by Trigeorgis.  

types of real options that can apply to information technology (IT

exploration, altering scale, abandonment, switching use,

compound options, and strategic growth. 

In addition to those options, Harmantzis et al (2006) introduces options specific 

to the telecommunications industry such as the option to discover or to franchise.  
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There are many different kinds of real options that can fit into the option premium

the framework provided by Trigeorgis.  For example, Benaroch (2002) lists the many 

types of real options that can apply to information technology (IT): deferral, staging, 

exploration, altering scale, abandonment, switching use, outsourcing, leasing, 

compound options, and strategic growth.  

In addition to those options, Harmantzis et al (2006) introduces options specific 

to the telecommunications industry such as the option to discover or to franchise.  
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“probably later”, “maybe later”, and “probably never”, depending on volatility and NPV. 
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In addition to those options, Harmantzis et al (2006) introduces options specific 

to the telecommunications industry such as the option to discover or to franchise.  
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Kauffman and Kumar (2008) introduce the option to sponsor network technology 

investments.  Damnjanovic et al (2008) identify the recourse option in a simplified two-

stage stochastic setting.   

Cucchiella and Gastaldi (2006) explore different real option types for managing 

risks in supply chains.  Many of the risks that they categorize also arise in some variant 

form in TNM for public agents.  For example, available capacity is an uncertainty in 

transportation planning, while information delays have significant weight in real-time 

traffic operations and incident management.  

 

2.2.4 Application of Option Analysis to Networks and Transportation 

Besides the different types of options that have been derived to model different 

management strategies for dealing with uncertainty, ROA has been applied to a number 

of network-related and transportation problems. 

 Kogut and Kulatilaka (1994) explore the value of switching between different 

suppliers in an international supply chain network when currency exchange rates 

fluctuate as a mean-reverting process.  Although they ignore transport costs, their 

research introduces the concept of a “hysteresis band” representing a region of inertia 

between two modes of operation.  In other words, when there is uncertainty and high 

switching costs, it is not always optimal to switch operation just when the threshold of a 

static NPV shows that the threshold has been crossed.  This is because there is value in 

maintaining a current position in case conditions revert back in the near future.  This 

band increases when there is greater uncertainty and higher switching costs.  Chapter 4 
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investigates this notion of maintaining position in facility relocation problems for 

wildland fire resource planning. 

 Other relatively early adopters of ROA for network applications are 

Huchzermeier and Cohen (1996).  They investigate the switching option for a supply 

chain network design by incorporating the design problem as a sublevel of the switching 

option valuation.  Their model is shown in FIGURE 2-5.  One of the conclusions that the 

authors make is that “supply chain network options differ from project options, because 

they exploit synergies derived from global coordination of multiple investments, i.e. 

network design decisions...”  They show that there is value from the flexibility to 

redesign a supply network in the future.  It is relevant to TNM because bi-level 

transportation network design problems can also be modeled using a similar fashion to 

increase value under uncertainty.  This value from redesigning a network is explored 

further in Chapter 3. 
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FIGURE 2-5. A deferral option model incorporating supply chain design. (Huchzermeier and 

Cohen, 1996) 

 

Other ROA studies in networks include Keppo’s (2002) option pricing for link bandwidths 

in a telecommunications network; Snyder’s (2006) review of ROA as a tool for facility 

location under uncertainty; Cucchiella and Gastaldi (2006) on using ROA to manage 

supply chain risks; and Kauffman and Kumar (2008) on identifying network effects and 

embedded options in network technology investments.  Snyder commented that efforts 

to incorporate real options have generally been to compute the option value only, not 

to incorporate the optimization of the option value as a function of design variables.  

This is achieved in Chapter 3 for the network design problem by maximizing the option 

value.   

 In addition to Dulles Greenway project example given by Garvin and Cheah 

(2004), other researchers have applied ROA to the transportation industry.  Zhao et al 

(2004), Pichayapan et al (2003), and Vergara-Alert (2007) use real option approaches to 
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highway investment under stochastic demand.   Zhao et al’s solution approach is based 

on Least Squares Monte Carlo simulation, Pichayapan et al’s approach is based on a 

binomial method, and Vergara-Alert offers a closed form approach.  The underlying 

methodology compares the benefit of a highway segment investment to the cost of 

construction and compares it to traditional NPV analysis.  In a network setting, however, 

there are interdependencies in performance due to the interrelated stochastic flows 

that cannot be ignored.  

      Saphores and Boarnet (2006) investigate the application of real options in 

congestion relief investments from an economic and urban planning standpoint.  They 

show that under complete certainty, investment decisions based on utility maximization 

are approximately equivalent to the policies derived from standard benefit-cost 

analysis. 

 Tsai et al (2008) construct an option contract for trading truckload contracts in 

the freight trucking industry.  They use monthly truckload contract pricing data and 

apply statistical methods to estimate daily fluctuations in price for characterizing the 

stochastic prices as O-U processes. 

 While there are applications of real options in transportation, there hasn’t been 

much effort in using the solution methodologies to incorporate flexibility in network 

design strategies that explicitly account for network effects.   
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2.2.5 Solution Methods 

The discussion has so far been on the benefits of real option analysis, but not specifically 

on how they can be solved.  Given an expiration time T and a project value based on one 

or more non-stationary stochastic processes, the problem of deciding the optimal time 

to exercise an option can be interpreted as an optimal stopping problem, according to 

Dixit and Pindyck (1994).  The optimal stopping problem can be solved via dynamic 

programming when the interest rate ρ is specified exogenously.  This is typically the case 

in public infrastructure where the benefit of a project is measured in terms of social 

welfare, which does not have equivalent market portfolios. 

 

2.2.5.1 Discrete Time Optimal Stopping Problem 

An optimal stopping problem is one class of dynamic programming control problems 

which involves optimizing the binary decision to continue a process for another 

incremental time period or to stop it at the current time period.  The problem can 

involve an infinite time horizon in which case the steady state decision is evaluated; or a 

finite time horizon which is generally the case for real option problems.  The problem is 

decomposed into a backwards dynamic program where the objective function in each 

time state is defined as follow. 

 

Φ7(�7) = maxUV8W7(�7, Q7) + �X6Y7>7?Φ7ZY7(�7ZY7)C:    (2.16) 
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Where ut is the decision to continue or stop the process at time t, πt is the profit flow in 

the current time state as a function of ut and state variable xt, ρ is the discount rate for 

continuous compounding, Et is the expectation at time t, and Φt is the value of the 

control problem.  Eq. (2.16) is commonly called the Bellman equation or the 

fundamental equation of optimality (Dixit and Pindyck, 1994). 

 An example of a real option defined as a stopping problem is the deferral option.  

In this example, the process is deferral and in each time state the problem is whether to 

continue deferring or to stop deferring and to invest immediately with a value of Φ0. 

 The problem can be solved using differential equations if the state variable is an 

Ito process.  However, in many real option problems (and particularly for transportation 

network management problems) the state variable is not the Ito process, but a function 

of other variables that evolve as Ito processes.  Vergara-Alert (2007) demonstrates the 

limits of closed form solutions for a transportation investment problem by solving a very 

small and simple problem which does not consider network effects.  Clearly, numerical 

methods are necessary to solve realistic real option dynamic programming problems. 

 

2.2.5.2 Numerical Methods 

Trigeorgis (1996) describes several common numerical methods developed to handle 

real option analysis.  The methods can generally be categorized into three classes: finite 

difference, binomial lattice methods, or Monte Carlo simulation. 

 Finite difference methods (Brennan and Schwartz, 1977) require establishing a 

differential equation to relate the option value to the stochastic variables, and then 
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using discrete finite difference methods to numerically estimate the solution.  The 

method is not very suitable for bi-level network design problems, where the differential 

equation would be difficult to specify. 

 Binomial lattice methods (Cox et al, 1979) assume that the probability 

distribution at each time state can be divided into two groups.  By increasing the 

number of intervals up to the time horizon, it can be shown that the solution to the 

binomial tree converges to the actual solution.  Trigeorgis (1991) developed a log-

transformed version of the method that is consistent, numerically stable, and efficient.  

The log-transformed binomial lattice method could be used to obtain option values for 

multiple interacting options.  His example illustrating the significance of properly 

evaluating multiple options is presented in Appendix A.  This can have much significance 

in network-based options because many of the link component strategies can be viewed 

as individual options that would interact with each other similar to how multiple options 

actually do interact.  FIGURE 2-6 illustrates a binomial lattice method. 
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FIGURE 2-6. A binomial lattice type approach. 

 

Despite the benefits of the method for dealing with multiple options simultaneously, it 

is not able to handle multi-dimensional variables very well because of its inherent 

method of simplifying probability distributions into branches.  Some methods were 

developed as trinomial lattices, but the “curse of dimensionality” quickly becomes the 

dominant issue in the tractability of the method. 

 Gamba and Trigeorgis (2007) extend the original log-transformed binomial 

lattice method to multi-dimensional options.  Compared to other efforts to achieve this 

same purpose, their proposed algorithm is also shown to be the most computationally 

efficient one.  Earlier work produced the generalized log-transformed (GLT) approach 

for dimensions greater than 2, but they could result in negative probabilities for some 
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parameter choices.  The proposed adjusted GLT (AGLT) method transforms the position 

of the value by redefining it relative to the drift parameter. 

 The third type of method includes the Monte Carlo simulation methods (Boyle, 

1977).  The original methods involve simulation of multiple paths of realization for the 

stochastic process(es) and backwards dynamic programming.  However, the simulation 

could get very computationally expensive because at any time step, the backwards 

dynamic program involves foreseeing the expected continuation function in the future 

time step. 

 This complication resulted in the Least Squares Monte Carlo simulation method 

(LSM) refined by Longstaff and Schwartz (2001).  LSM reduces computational cost by 

using least squares regression at each intermediate time step based on the results of 

the following future time step along all the simulation paths.  This idea is captured in 

FIGURE 2-7, where the Bellman equation (eq. (2.16) value Φ(t, p1) depends upon 

E[Φ(t+1)] obtained by least squares estimation from all the t+1 states where the current 

value is “in-the-money” (for maximizing a deferral option, this would mean having a 

positive NPV).  The least squares fitting is performed with polynomial basis functions 

such as Laguerre or Hermite polynomials.  In Chapter 3, the LSM method used to 

compute the deferral option value for the continuous network designs makes use of 

Hermite polynomials, although Laguerre polynomials can be used as well. 
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FIGURE 2-7. A Least Squares Monte Carlo simulation approach with 4 realized paths. 

 

Compared to the earlier binomial lattice methods and Monte Carlo simulation, LSM is a 

very cost-effective method of obtaining option values for high-dimensional variables.  

The method has been proven to converge toward the actual option value as the number 

of paths, time steps, and number of polynomials for regression approach infinity.  

However, the method is known to have a downward bias for small samples.   Another 

major disadvantage of the method is the inability to handle multiple interacting options.  

For the network-based options, overcoming this disadvantage would provide a method 

of decomposing the option values into link components. 

 Gamba (2002) overcomes this disadvantage for the LSM for three extreme cases: 

1) the trivial case where the options are independent of each other, resulting in a 

summation; 2) purely compound options where one option depends on whether the 
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prior option is exercised; and 3) mutually exclusive options where selecting one would 

eliminate the other alternative options.   

 

2.2.6 Issues with Network-Based Options 

Network-based strategies that rely on optimization models for design can also 

incorporate the optimization of timing at either 1) the link component level (link 

investment deferral option set); 2) the design level (network option design problem); or 

3) separately as an investment (network investment deferral option).  These approaches 

are discussed in much more detail in Chapter 3, which focuses on formulations as well 

as solution approaches with numerical examples.  The AGLT binomial lattice method by 

Gamba and Trigeorgis (2007) offers a potential solution to computing the option values 

of the individual links treated as interacting options, but the multi-option LSM by Gamba 

(2002) offers a simpler solution that can be tailored to fit the algorithm to network 

option staging problems.   
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“It is easier to resist at the beginning than at the end.” – Leonardo da Vinci 

 

CHAPTER 3 NETWORK-BASED REAL OPTION MODELS 

 

 

The literature review in Chapter 2 shows that network design models under uncertainty 

have been studied rather extensively, although very few have dealt with the complex 

nature of non-stationary stochastic processes.  The few examples that were mentioned 

reside in the logistics literature such as Snyder et al’s (2007) stochastic location model 

with risk pooling (SLMRP).  However, these models do not incorporate congestion 

features in their formulations such as the bi-level problems facing urban transportation 

planners.  Furthermore, the SLMRP model’s decision variables are static in time; the 

problem is not designed to optimize an option to allocate investments to different 

network links over a maximum time horizon.  Instead, the problem looks at obtaining 

the best allocation of resources for a present commitment. 
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 Chapter 2 also reveals a growing literature in real option theory.  Just as 

researchers in network design are grasping with methods to solving a dynamic decision-

making problem under uncertainty, the world of corporate finance is finding ways of 

quantifying the value of flexibility in decision-making when thinking of it as an option 

with an expiration date. 

 Several researchers have applied real option methods to transportation 

investments, and some have looked at real option methods for supply chain network 

design (Huchzermeier and Cohen, 1996) or single period urban network toll design 

(Damnjanovic et al, 2008).  However, no modeling framework and solution methodology 

based on real options has been proposed for multi-period urban network design 

problems under uncertainty. 

 Modeling the network design problem and solving it using conventional 

numerical methods will show that there can be significant value gained by decision-

makers by being able to quantify the flexibility under uncertainty.  Fairly new 

developments in real option solution methods such as those developed by Gamba 

(2002) enable the more complex problems to be solved. 

 This chapter presents three optimization models that incorporate flexibility into 

network design using real options.  These models show the range of new strategies that 

a decision-maker can have when considering their network design projects as options.  

The three problems are solved for the Sioux Falls network and compared to illustrate 

that value to a decision-maker.  Since the three models are specified for urban network 

design problems with bi-level formulations, there is a more generalized application of 
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the models to many other network-related problems because they can be extended to 

simpler network design models as well.   

 

 

3.1 MODEL FORMULATIONS 

 

Starting with the network design formulations at the start of Chapter 2, there is a graph 

G of a set of nodes N, a set of links or arcs A, and a set of commodities M, subject to a 

set of constraints S.  There is a continuous time element t and let’s assume that the 

demand between each origin-destination pair and commodity, [7 ∈ ℝ|�|I|#|, evolves 

stochastically as discussed in Section 2.2.2.  |O| and |�| are the number of nodes and 

number of commodities, respectively.   

Other variables can also be considered stochastic variables, such as interest rate, 

degradable link capacities, or budget constraint, although for long term transportation 

planning purposes the OD demand generally exhibits the greatest uncertainty.  For a 

multi-dimensional stochastic variable, the volatility parameter becomes a diffusion 

parameter that includes correlation between different OD pairs and commodities. An 

example is shown for a geometric Brownian motion characterization of the OD demand: 

 

,[7 = αI[7,� + σ[7,=        (3.1) 
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where α ∈ ℝ|�|I|#| is the drift vector and σ ∈ ℝ|�|I|#|3|�|I|#| is the diffusion matrix.  If 

OD pairs are independent of each other, then the diffusion matrix reduces to a volatility 

vector of size |O|4|�| times the identity matrix.   

Other variables that need to be defined for these models are the initial budget B, 

a non-negative discount interest rate of ρ for all projects, and a planning horizon T after 

which a managing agent’s option to invest in a project would expire.  For realistic 

network design problems, there may be a subset of links &̅ ⊆ & that can be invested 

upon.   

    

3.1.1. Option Value of Flexible Network Design 

The simplest approach to considering network design as a real option is to assume that 

the design solution is an investment and to compute a deferral option value given the 

set of link designs, similar to Huchzermeier and Cohen’s (1996) treatment of real option 

value of supply chain designs, although multi-dimensional stochastic OD demand is 

considered here.  Eq. (2.1) – (2.5) and Eq. (2.16) are combined to obtain the hierarchical 

network investment deferral option (NIDO) model.  More specifically, Eq. (2.16) can be 

expressed explicitly in terms of the maximization of two time-dependent decision 

alternatives: defer or invest now in the optimal network design in that time.  

Additionally, for transportation planning purposes let’s assume that compounding 

occurs at a discrete (e.g. annual) rate.   

The result is a Bellman equation for determining the value of the option to invest 

in a network design as a function of stochastic OD demand. 
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Φ7`a[7`b = max cW7` d�a[7` , �7`be , (1 + f)XY7>gΦ7`hia[7`hibjk   (3.2) 

 

where Δt is a discrete increment in time and tn is a time state such that tn+1 – tn = Δt and 

N = -
∆7 is the final time horizon while n = 0 is the initial time state being solved for.  φ is a 

system cost evaluation function such as total travel time that depends on the demand at 

time state tn, [7`, and the optimal design �7`  for minimizing the total cost.  The payoff 

function W7` : ℝ → ℝ is the net present value of annuities minus the investment cost.  

Note that the option decision is not a function of the design of the network here; 

instead this modeling approach provides the value of flexibility to defer a network 

design in a time horizon with uncertainty in the demand.    

The payoff value or NPV of annuities is based on the difference of the baseline 

total system cost with no investment, �a[7` , 0b,  and the objective value with optimal 

network design found at time tn, �a[7` , �7`b: oℝ|p|, ℝ|p̅|q → ℝ.  The option value is a 

function of only the stochastic OD demand, Φ7`a[7`b.   

The link design  �7` ∈ ℝ|p̅| and network design objective values �a[7` , �7`b are 

obtained by solving Eq. (2.1) – (2.5), where [7` ∈ ℝ|�|I|#| is determined from the Rm for 

each origin-destination pair.  This sub-problem is a mixed integer linear programming 

program that can be solved with standard network optimization methods depending on 

the type of problem.  Further detail on solution methods are presented in the following 

Section 3.2. 
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3.1.1.1. Variation 1: Congestion 

Several variations to this model exist.  In an urban setting, congestion cannot be ignored 

and the generalized bi-level formulation from Eq. (2.7) – (2.10) replaces Eq. (2.1) – (2.5) 

in solving for the network design objective values.  The implication of this substitution is 

that user equilibrium conditions for route choice are assumed and the solution methods 

would now require heuristics because bi-level network design problems are non-convex 

and non-differentiable.  Because the NIDO model does not maximize the option value as 

a function of the design variables, existing solution heuristics for bi-level network design 

problems can be used with numerical methods for obtaining American-style option 

values.   

 

3.1.1.2. Variation 2: Passenger Travel Demand 

In passenger travel demand modeling, typically each origin-destination pair is treated as 

a single commodity.  If the NIDO model is applied to this context, then the dimension of 

the stochastic demand variables would be reduced from [7` ∈ ℝ|�|I|#| to [7` ∈ ℝ|�|I
, 

where each commodity � ∈ � is just an OD pair. 

 

3.1.1.3. Variation 3: Zero Drift 

In the case when the drift parameter is zero, the stochastic demand reduces to a 

martingale with a stationary expected value over time.  This type of model can be used 

to address uncertainty similar to time-dependent scenario planning, where the 
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expected demand is stationary but the uncertainty increases with the time horizon.  

Zero drift also benefits the solution method, as will be discussed in Section 3.2. 

 

3.1.1.4. Variation 4: Continuous Network Design Problem 

The network design model presented in the beginning of Chapter 2 is a generalized 

discrete network design problem.  Many other network design problems exist as well, 

with a common alternative being the bi-level continuous network design problem 

(CNDP) and its variations (Yang and Bell, 1998).  In the CNDP, the objective is to allocate 

budget to expand capacity at links in a network to minimize the total system cost.  In 

this formulation, the Eq. (2.7) – (2.10) are modified from a mixed integer bi-level 

problem to a continuous variable bi-level problem.     

 

�a[7` , �7`b = minr ∑ ctayJv,tbxtt∈wx + ∑ ct(0)xtt∈wxy        (3.3) 

Subject to 

 ∑ dtyJv,t{t∈wx ≤ B             (3.4) 

 0 ≤ yJv ≤ y}t~,     yJv , y}t~ ∈ ℝ|wx|        (3.5) 

Where the link flows xa are determined by the lower level user equilibrium program. 

min~ ∑ � ctaw, yJv,tbdw~�5t∈w          (3.6) 

Subject to 

 ∑ ζ���� = [7�̀�, ∀r, s ∈ N         (3.7) 

 ∑ ∑ ∑ ζ���δt,������ = xt         (3.8) 

 ζ��� ≥ 0, ∀k ∈ K,   ∀r, s ∈ N         (3.9) 
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Where 

 γ is a parameter for relating the budget allocations to capacity improvements; 

 �
�3  is the maximum investment allocation allowed on link a; 

 ����  is the flow on path � ∈ � connecting origin r with destination s; 

 ���� ∈ ℝ|�|3|p| is the node-link incidence matrix; 

 da is the cost of adding a unit improvement to link ; ∈ &̅; 

 *�(��, �7`,�) is a travel cost as a function of investment �7`,� and link flow xa. 

 

The construction cost vector , ∈ ℝ|p̅| is assumed to discount at the same rate of 

interest as the budget, so that the same budget constraint in Eq. (3.4) can be used for all 

time periods. 

 The link cost function needs to be monotonically increasing, and a popular one 

created originally by the Bureau of Public Roads (BPR) is a power function shown in Eq. 

(3.10). 

 

*�a��, �7`,�b = ct,5 �1 + α � ~���Zr�v,����          (3.10) 
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Where  

α and β are parameters specific to the BPR function, typically 0.15 and 4, 

respectively; 

 ca,0 is the free-flow travel cost on link a; 

 Ca is a capacity parameter. 

 

In the CNDP, the link investments are continuous decision variables that increase the 

capacity parameter to reduce the cost of travel along a link.  This problem has been 

shown to be non-convex and non-differentiable (Yang and Bell, 1998). 

 

3.1.1.5. Variation 5: Fixed Design 

The formulation of Eq. (3.2) has a subtle implication on a network design over time.  At 

any future time state a managing agent that has not yet invested their budget has the 

option to consider investing in a new design solution given realizations in demand up to 

that time.  This means that if time and new data reveals a dramatic shift in demand for 

some OD pairs and commodities, then the agent can choose a new design to adapt to 

this shift.  This assumes that the cost of changing a design choice is negligible with 

respect to the budget. 

 NIDO can also be modified to obtain the option value for an agent who does not 

have the option to change their design in the future.  This can be achieved by changing 

the �7`  in Eq. (3.2) to �7� . 
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Φ7`a[7`b = max cW7` d�a[7` , �7�be , (1 + f)XY7>gΦ7`hia[7`hibjk   (3.11) 

 

This changes the network design objective evaluations to �a[7` , �7�b for all time states.   

The result is that the agent loses the flexibility to re-design the network in the future 

because they have committed to an initial design.  However, this restriction creates an 

easier problem to solve.  It is possible to quantify the value of not committing to a 

preferred alternative in transportation planning by solving both Eq. (3.2) and (3.11). 

 

3.1.1.6. Network Design Premium 

To quantify the value of not committing to a preferred alternative, recall from Eq. (2.15) 

that the expanded NPV is the sum of the static NPV and an option premium.  For a 

deferral option, the premium is the added value of the flexibility to defer an investment 

under uncertainty.  For the NIDO model, this premium includes the flexibility to redesign 

the network as discussed in Section 3.1.1.5.  This additional value due to design 

flexibility was introduced by Huchzermeier and Cohen (1996), and can be stated as the 

following observation: The deferral option premium F of an investment over a network 

G(N,A) with M commodities is composed of the sum of a basic deferral premium with 

design commitment, FD, and a non-negative flexible network design premium, FN. 

 Then the NIDO option premium F can be further decomposed into two 

premiums. 
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 � = �� + ��           (3.12) 

 

In other words, Eq. (2.15) can be expressed as Φ = OPE + �� + ��  for network 

designs. 

A direct conclusion can be obtained from the observation.  Let �7` ∈ ℝ|p̅| be a 

vector of link investment allocations at time state tn.  ��7`, �7`, W7`  and ΦJv are the 

flexible network design premium, the option premium, the net present value of 

immediate investment, and the option value computed at time state tn, respectively. 

 

Proposition 3.1 – For a given OD demand ~� �a¡ ∈ ℝ|�|I|#|, ¢4 ∈ ℝ|�|I|#|3|�|I|#|b, a 

time horizon T, and discount rate ρ, a network investment �7` ∈ ℝ|p̅| in G(N,A) with 

flexible network design premium ��7`  = 0 and option premium �7` > 0 has an optimal 

design �7`  for maximizing the option value ΦJv, whereas ��7` > 0 is the opportunity cost 

of committing to the network design. 

 

Proof.  Let’s say that there’s an investment with ��7`a�7`b = 0 and �7`a�7`b > 0, but 

there is another design �7∗̀  such that ��7`a�7∗̀ b = 0 and ΦJvayJv∗ b > ΦJvayJvb, hence 

contradicting the design solution.  It follows that there should be a number of future 

time states �¥Z¦, § > 0 such that W7`h¨a[7`h¨ , �7∗̀ b(1 + f)X¦Y7 > W7`a[7` , �7`b.  However, 

if such a solution exists, then at that time �¥Z¦ ≤ � ©ªV the optimal policy is to redesign 
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from �7`  to �7∗̀ , resulting in ��7`a�7`b > 0.  Hence it is contradictory and ��7` = 0 if 

�7` > 0 and �7`  is an optimal design. 

 If ��7` = 0 and �7` = 0, the optimal decision is to either invest immediately if 

W7` > 0 or to reject the investment altogether.  The problem is reduced to designing a 

�7`  for a static NPV with the added constraint that W7`h¨a[7`h¨ , �7`h¨b(1 + f)X¦Y7 ≤
W7`a[7` , �7`b for all N + § ≤ -

Y7 and �7`h¨ .  Any feasible design solution found may not be 

a stochastic optimal with the highest expected static NPV, although the decision would 

be to invest (NPV > 0) or reject (NPV < 0) immediately because future conditions would 

be worse off. 

 If ��7` > 0 and �7` > 0, then there are two possibilities due to the definition and 

non-negativity: ��7` = �7`  or ��7` < �7`.  For the first case, the value from deferring is 

based purely on other designs, which means that the current design needs to be 

changed.  In the latter case, there is value to waiting due to both the timing of the fixed 

design ��7`  as well as the network redesign.  Committing to the network design would 

forego the value of the flexible network design premium ��7`  in favor of only the deferral 

premium ��7`.   

 

Two significant conclusions can be drawn from this network design premium.  First, the 

traditional transportation planning practice is to commit to a preferred alternative and 

then to try and secure funding for it among a list of other competing projects in a 

regional transportation plan.  Since these plans can sometimes take years to secure the 
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funding, finalize design, and complete construction, it is prudent to incorporate 

flexibility into the planning process by monitoring these alternatives in relation to OD 

data and updating the alternatives as new data is obtained.  In doing so, the priorities of 

these “conditional alternatives” can be determined from expanded NPV’s that 

incorporate the value of deferral and design flexibility. 

 The second conclusion is that deferral options based on fixed designs can serve 

as lower bounds for flexible design options since the network design premium is non-

negative.  This is crucial for the following two models, which can be too complex to 

solve as flexible designs but are feasible as fixed design options. 

 

3.1.2. Maximizing Option Value of Committed Network Design 

The NIDO model computes the option value as a function of the optimal timing given an 

exogenous network design solution.  Alternatively, the option value may be maximized 

as a function of both the initial network design and the timing decision.  The problem 

becomes computationally intractable for the NIDO problem with the flexibility to re-

design, because each time state would introduce another set of design variables and 

convergence cannot be achieved.  However, this can be modeled if the fixed network 

design variation from Section 3.1.1.5 is considered.  The Network Option Design Problem 

(NODP) maximizes the fixed design option value as a function of both a committed or 

fixed network design and the deferral decision.  “Fixed design” and “committed design” 

will be used interchangeably but mean the same thing: a design that does not have the 

flexibility to be changed in the future but can still be deferred. 
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Φ7`a[7` , �7�b = max1V� cW7` d�a[7` , �7�be , (1 + f)XY7>gΦ7`hia[7`hi , �7�bjk (3.13) 

 

The difference between Eq. (3.13) and (3.2) is that the decision variables include the 

initial design.  The consequence of this change is that now the heuristics for network 

design problems cannot be used directly.  Instead, meta-heuristics such as genetic 

algorithm can be applied with option valuation numerical methods to obtain the 

solution.  More details are provided in Section 3.2. 

 The model can be modified to handle congestion with bi-level network design 

problems for the payoff evaluation. 

 One key conclusion that can be drawn from the network design premium and 

Proposition 3.1 is that the fixed network design option ΦD is always less than or equal to 

the flexible network design option Φ because Φ¬ + F® = Φ and FN is non-negative.  

NODP not only provides an optimal design for maximizing the fixed design option value; 

it also provides a lower bound to the value of the option under a flexible design setting. 

 

3.1.3. Link Investment Deferral Option Set 

For fixed discrete network designs, real options can be incorporated in yet another way.  

Suppose first that instead of individual links, groups of links can be considered as 

projects for computational efficiency.  Instead of considering a set of links that can be 

invested, &̅, groups of links can be considered as projects among a set of projects L.  The 

network design can be treated as a set of interacting options as discussed in Chapter 2, 
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where the decision to defer can be made to each link or project.  The traditional design 

decision (whether to allocate budget to a link or not) is merged with the option decision 

(whether to invest in a link or to defer) into a multivariate set of decisions (which links in 

a committed design to invest immediately and which to defer).   

Let’s call this model the Link Investment Deferral Option Set (LIDOS).  Unlike the 

NIDO and NODP Bellman equations, the objective of the LIDOS is to select which links to 

defer in order to maximize the incremental payoff in the current time state and the 

expected option value from the following time state.  LIDOS is a stochastic project 

selection and staging model.  This solution algorithm would be a backward dynamic 

program with forward elements, making it unsolvable using this approach. 

Although the model cannot be solved directly, the key is to define it in such a 

way that a lower bound solution can be obtained.  Extending Eq. (3.12) further, the 

option premium of this option set can be modeled as follows. 

 

 � = ∑ a��,¦ + �̄ ,¦b¦∈¯ + �̄ °         (3.14) 

 

Where FD,l is the deferral premium of an individual link, FL,l is the premium gained from 

the flexibility to invest in the remaining links in a fixed order, and FLS is the premium 

from the flexibility of switching between one order and another.  For example, a design 

with 3 discrete link investments would gain flexibility value by considering the individual 

deferral of the 1st, 2nd, and 3rd links.  It would gain further value by allowing the network 
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agent to switch the order from 1st, 2nd, and 3rd to 1st, 3rd, and 2nd, or any other 

permutation at a future time given that all of these links have been deferred.   

Note that the network design premium FN is not included.  The backward 

dynamic programming objective is not compatible with the time-dependent network 

design constraints of the flexible design option such as a budget that would depend on 

the decisions from an earlier time state. Instead, a fixed initial design is not explicitly 

constrained in the formulation and can be used as the basis for staging interacting link 

options.   

By defining the model’s option premiums as the sum of deferral, flexibility of 

investing in remaining projects in an ordered combination, and the flexibility to change 

the order in the future, the model has been decomposed into non-negative portions 

where one portion is solvable.  The solution methods described in Gamba (2002) are the 

closest to extending LSM to deal with multiple options with high-dimensional stochastic 

processes needed to solve this kind of problem.  The extensions are designed for three 

extreme cases: a trivial case where the options are purely independent of each other, 

the purely compound case where each option is serially dependent upon the 

completion of the prior option, and the mutually exclusive case where choosing one 

option eliminates all others.   

However, the LIDOS problem involves none of these three cases directly.  Clearly 

the link investments cannot be treated as independent options because of network 

effects: investing in one link will impact the travel costs for all other links due to shifts in 

route choices.  It is also not a case of mutually exclusive options since the LIDOS is 
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defined such that all the link decision variables fit within the budget since they can all be 

invested on immediately as a discrete network design solution.  The second stylized 

setting is to treat the link investments as an ordered set of compound options where 

investing in the (j+1)th  option is only allowed if the jth option is exercised in the ordered 

set h.   

A simpler model and algorithm is proposed to handle only � = ∑ a��,¦ + �̄ ,¦b¦∈¯  

without the option to change the order.  Let’s call this simpler model the Ordered Link 

Investment Deferral Option Set (OLIDOS) model.  The advantage of this approach is that 

the complex problem of deferring individual link investments in any order can be 

bounded by a more simplified problem involving a fixed, ordered set of interacting 

options that can be solved by the multi-option LSM developed by Gamba (2002). 

In Gamba (2002), this treatment of an ordered set of compound options can be 

modeled with the following Bellman equation: 

 

Φ±²,7`a[7`b =
max³´²,V` cW±²,7` �� d[7` , µ±²,7`e� + Φ±²hi,7`a[7`b, (1 + f)XY7> ¶Φ±²,7`hia[7`hib·k 

           (3.15) 

 

Where the hj is the j
th option among the set of ¸ options in the ordered h

th set, 

ℎ ∈ ¹, ¹ = |¸|! different possible combinations of ordering the options.  µ±²,7` is the set 

of first j options at time state tn for ordered set h equal to 1.  For example, TABLE 3-1 

shows a sample portion of the 120 different combinations that exist for 5 interacting 
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options.  If the optimal decision for h = 1 is to invest in the first option immediately and 

defer the rest, then µ±i,7� = 1 and µ±²,7� = 0 for j = {2, 3, 4, 5}.  For h = 1, h1 = option 5.   

 

TABLE 3-1. Ten of the 120 possible ordered sets for 5 options 

Order set, h h1 h2 h3 h4 h5 

1 5 4 3 2 1 

2 5 4 3 1 2 

3 5 4 2 3 1 

4 5 4 2 1 3 

5 5 4 1 2 3 

6 5 4 1 3 2 

7 5 3 4 2 1 

8 5 3 4 1 2 

9 5 3 2 4 1 

10 5 3 2 1 4 

 

 

Furthermore, Eq. (3.16) is proposed to select the ordered set that offers the maximum 

option value.  The combination of Eq. (3.15) and (3.16) is the formulation for modeling 

OLIDOS.   

 

Φ7`a[7` , µ7`b = max±8 ∑ Φ±²,7`a[7`b	 :       (3.16) 

 

Among the three models, OLIDOS is the most versatile for managing agents because it 

provides decision-making insights at the individual link or project level.  If all the 

projects are constrained to be invested together as one package, the model reduces to 

the fixed design option model.  Solving the OLIDOS would not only provide the 
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managing agent with a committed network design investment plan at the link level in 

the time dimension, it would also provide a lower bound on the value of deferring 

individual links of a flexible network design with flexible ordering of link investments. 

 FIGURE 3-1shows the comparison of the three models and how they relate to 

the Network Design Problem.   

 

 

FIGURE 3-1. Comparison of Three Network-Based Real Option Models. 

Network Design Problems

Deterministic OD (q)

Static Objective (min 

φ(x,y))

where

For time t, N nodes, M commodities

Eq (3.11)

NIDO

Φ = NPV + FD + FNEq (3.13)

Eq (3.15), (3.16)

OLIDOS

Φ = Σ(NPV + FD + FL)

Multi-Option LSM

+ Combinatorial

,[� = αI[�,� + σ[�,= 

[� ∈ ℝ|O|2|�| 

� = ¼a��,§ + �̧ ,§b + �̧ '   

� = ¼a��,§ + �̧ ,§b 

Φ�N a[�N ; ��0 b 

Φ�N a[�N , µ�N b 

Eq (3.2)

Φ�N a[�N ; ��N b 

Φ�N a[�N , ��0 b 

NODP

Φ*(yt_0) = NPV + FD

LSM

LSM + 

Heuristics



www.manaraa.com

66 

 

3.2. SOLUTION ALGORITHMS 

   

3.2.1. Network Investment Deferral Option 

NIDO is a single option dynamic programming problem with a network-based objective 

function �a[7` , �7`b  that depends on multi-dimensional stochastic variables [7` .  

Because of the complex nature of some network design problems, it is not suitable to 

use finite difference methods to solve them.  Because network optimization problems 

can have high computational cost, a relatively fast converging numerical option 

valuation method is necessary.  This requirement rules out traditional Monte Carlo 

simulation methods as well.  The multi-dimensionality of the stochastic variables makes 

it difficult to apply traditional binomial lattice methods to solve the problem. 

 The Least Squares Monte Carlo (LSM) method is chosen for solving the NIDO 

value.  The method provides a pathwise approximation to the optimal stopping rule for 

maximizing the value of an American option.  In order to apply this method, the [7`  

needs to be in a discrete format and certain assumptions need to be made for the 

payoff function to obtain the NPV.   

 

3.2.1.1. Demand Simulation 

The OD demand simulation can be derived from Eq. (3.1) and Section 2.2.2.    In general, 

correlated demand can be simulated by applying Cholesky decomposition methods and 

simulating the processes as independent variables.  Because of that, the notation is for 

one-dimensional elements of multi-dimensional vector parameters.   
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[7�� = [7X∆7�� exp �d¡�� − H¿ÀI
4 e Á� + ¢��=Â7�      (3.17) 

 

Where D ∈ ℝÃ�IÃ|#|  is a generalized drift parameter and ¢ ∈ ℝÃ�IÃ|#|3Ã�IÃ|#|  is a 

generalized diffusion parameter, and =Â7  can be simulated with a normal inverse 

function with Ä√Δ�, where Ä~O(0,1).  If the OD demands are independent of each 

other, the σ becomes a diagonal matrix.  Time series data of OD demand would be 

necessary to estimate the parameters. 

 

3.2.1.2. Payoff Function Valuation 

Before determining the net present value, the network design objective value 

�a[7` , �7`b needs to be solved using network design algorithms.  For example, a 

minimum spanning tree problem might utilize a greedy algorithm.  On the other hand, a 

continuous network design problem would require bi-level heuristics. 

The method of obtaining the net present value depends on the drift parameter 

of the stochastic variable(s) and whether the network design problem is bi-level with 

congestion.  If the drift parameters are zero, i.e. the expected value remains the same, 

then the net present value of an infinite series of equal payments with constant interest 

rate would be:  

 

W7(�([7, �7); ¡ = 0) = ÇaÈ(ÉV,5)XÈ(ÉV,1V)b
2X(2Z6)Êi − ∑ ,��7,�Ë�∈p̅     (3.18) 
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The first term on the right-hand side is the net present value of infinite annual returns.  

The second term is the investment cost.   

For non-zero drift values, an incremental assignment heuristic is proposed.  For 

each increasing Δt, the expected value of all OD increments Δqt are assigned to the 

network using the shortest paths based on link travel times corresponding to the 

updated values from the previous time increment. 

 

Algorithm 3.1 

1. Let W7` d�a[7` , �7`be = Ì d�a[7` , 0b − �a[7` , �7`be − ∑ ,��7` ,�Ë�∈p̅ . 

2. Let § = 1. 

3. If there’s congestion, update the link costs *7`h¨ = *7`h¨(�7`h¨Êi). 

4. Let W7` = W7` + (1 + f)X�∆7Ì d�a>g[7`h¨ − [7`h¨Êij, 0b − �a>g[7`h¨ −
[7`h¨ÊiC, �7`be using *7`h¨  for the link cost functions and all-or-nothing shortest 

path assignment. 

5. If the change in W7`  is greater than some tolerance, let � = � + 1 and go to step 

2, else end. 

 

Step 3 assigns the incremental expected flow onto the updated network, evaluates the 

benefit between having an investment against a baseline with no investment, converts 
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it to an annual increment, and discounts it back to the tn time state.  If there’s no 

congestion, the cost function does not need to be updated. 

 Convergence of this heuristic is not guaranteed if the absolute value of drift rates 

are so large that the incremental change in net present value from all-or-nothing 

assigned flow differences exceeds the discounting interest rate.  The threshold would 

depend on the current congestion and capacity levels in the network, as applicable.  

Because of this, NIDO valuation with bi-level network design problems having non-zero 

drift rates should be tested for convergence. 

 

3.2.1.3. Solution Algorithm 

The LSM algorithm with network payoff valuations is shown below for a given network 

G(N,A), OD demand [7`  with estimated parameters μ and σ for GBM process, budget B, 

interest rate ρ, time horizon T, and a number of simulation paths P. 

 

Algorithm 3.2 

1. For each path Í ∈ P and time state �¥, 0 ≤ N ≤ -
∆7, generate simulated OD 

demand using Eq. (3.17). 

2. For the known [7�  and for each of the simulated [7`(Í), 0 ≤ N ≤ -
∆7 , Í ∈ P, 

evaluate a network design objective such as Eq. (3.3) – (3.9) to obtain �7`  and 

use Eq. (3.18) or Algorithm 3.1 to obtain W7` d�a[7` , �7`be. 

3. Starting from N = -
Y7, use LSM to solve the backwards dynamic program Eq. (3.2). 
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a. If N = -
Y7, let Φ7` d[7`(Í)e = max �0, W7` d�a[7` , �7`be�. 

b. Keep track of the optimal decision with the variable Î(Í, �¥); if 

Φ7` d[7`(Í)e > 0, then that sample path is “in the money” and it is 

assigned a value of Î(Í, �¥) = 1.  Otherwise, let Î(Í, �¥) = 0. 

c. Let N = N − 1.  If N = 0, go to step 4. 

d. Estimate ΦÏ 7`hi  using least squares regression with Hermite polynomial 

series, although other polynomials that form an orthonormal basis such 

as Laguerre series can also be used: 

 

¹�(�) = (−1)��ÐI
I ÑÒ

Ñ3Ò �XÐI
I         (3.19) 

 

Where the first four polynomials in the series are: 

¹5(�) = 1  

¹2(�) = �  

¹4(�) = �4 − 1  

¹Ó(�) = �Ó − 3�  

 

The (i+1)th polynomial can be represented recursively as: 

¹�Z2(�) = �¹�(�) − �¹�X2(�)     (3.20) 

 

A regression function with Π polynomials could be of the form: 
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Φ7`hi = ∑ Õ�(−1)��ÐI
I ÑÒ

Ñ3Ò �XÐI
IÖ�×5        (3.21) 

 

Where the βi coefficients are estimated using least squares.  The x values 

are !W7` d�a[7`(Í), �7`beØÙV`Ú5 at each simulation path at the particular 

time interval. 

e. Use the estimate ΦÏ 7`hi  to solve Eq. (3.2).  If the optimal decision is to 

wait because (1 + f)XY7>gΦÏ 7`hij > W7` d�a[7`(Í), �7`be, then the 

option on that simulation path is still in the money and Î(Í, �¥) = 1. 

f. If N > 0, go to step c.  Otherwise, the value obtained from Eq. (3.2) is the 

value of the option. 

4. If ΦJ� > 0, then the option is worth keeping.  If (1 + f)XY7>gΦÏ Jij >
W7� d�a[7� , �7�be > 0 , then the best strategy is to defer the option.  If ΦJ� > 0 

and (1 + f)XY7>gΦÏ Jij ≤ W7� d�a[7� , �7�be then the best strategy is to invest 

immediately.   

5. The algorithm may need to be re-run at increasing values of Π until the option 

value stops increasing beyond some tolerance. 

 

3.2.1.4. Convergence 

Proofs of convergence are available from Longstaff and Schwartz (2001) for the LSM 

algorithm for both the continuous time American options as well as the discrete time 
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options.  The theorem from Longstaff and Schwartz is re-stated here in common 

notation for the discrete time options while their proof is provided in Appendix B. 

 

Theorem 3.1 (Longstaff and Schwartz, 2001) – Assume that the value of an American 

option depends on a single state variable X with support on (0,∞) which follows a 

Markov process.  Assume further that the option can only be exercised at times t1 and t2, 

and that the conditional expectation function Φ(ω; t1) is absolutely continuous and 

Û �XÜΦ4(Í; �2),ÝÞ
5 < ∞ 

Û �XÜΦÜ4 (Í; �2),ÝÞ
5 < ∞ 

Then for any à > 0, there exists an Π < ∞ such that 

limã→Þ Pr åæW(Ý) − 1P ¼ ¸'� �Í�; ç, è∆��ã

�×2
æ > àé = 0 

 

The conclusion is that selecting Π large enough and letting 
-
∆7 → ∞ would result in an 

option value that is within à of the true value.  The theorem is limited to one-

dimensional variables, although Longstaff and Schwartz noted that it should be 

applicable to multi-dimensional variables where uniform convergence occurs. 

 Scaling issues may arise when using LSM with high Π.  In these cases, the 

resulting option value will be clearly divergent.  The least squares regression can be 

scaled by the original NPV value to reduce matrix singularity in the estimation process.   
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3.2.1.5. Solving Variation 1: Congestion 

The solution Algorithm 3.2 can be used to solve the five variations presented in Section 

3.1.  In particular, the urban road design problem with congestion effects requires the 

use of heuristics to obtain the network design solution for payoff valuation.  Yang and 

Bell (1998) presents several solution methods to these types of problems, including the 

simple Iterative Optimization Algorithm (IOA) originally developed by Steenbrink (1974); 

Link Usage Proportion-based (LUPB) algorithms; Sensitivity Analysis Based (SAB) 

methods; and branch and bound methods for discrete network design problems first 

applied by LeBlanc (1975). 

 Global stochastic search methods have also been developed for congestion 

effects, such as Friesz et al’s (1992) simulated annealing approach with variational 

inequality constraints and the response surface approach in Chapter 5 for continuous 

network design problems.   

 

3.2.1.6. Solving Variation 4: Continuous Network Design Problem 

While there are better performing heuristics among those listed in Section 3.2.1.5, the 

IOA heuristic is a computationally cheap approach that is crucial to evaluating the 

option value with LSM.  IOA involves iteratively fixing one of the decision variables at 

one level to solve for the other decision variable, and then alternating to the other level 

with the updated solution.  For example, a bi-level problem with capacity expansion 

would be solved by fixing user equilibrium flow rates with no investments allocated, 



www.manaraa.com

74 

 

solving for the optimal investment allocations as a single level program, and then re-

solving the lower level user equilibrium problem with updated investment allocations. 

 Steenbrink showed that when ignoring Braess’ paradox, the algorithm converges 

to a local optimum, which Yang and Bell (1998) noted is the Cournot-Nash equilibrium 

rather than a more appropriate Stackelberg equilibrium.   

 

3.2.1.7. Solving Variation 5: Fixed Design 

Algorithm 3.2 can be used to solve the fixed design option value by simply obtaining the 

payoff value in Eq. (3.2) with the initial network design solution instead of applying IOA 

in each simulation path state.  In other words, the user equilibrium at each simulation 

path needs to be computed with the investment allocation from the initial time �7�  

instead of solving the optimal allocations at time state tn.   

The �7�  variable represents the set of allocations made at the initial time.  The 

NIDO model reduces from a joint option to defer and redesign to one that can only 

defer implementation of the initial design.   

 

3.2.1.8. Obtaining the Flexible Network Design Premium 

To obtain the network design premium, note that the static NPV is the same at the base 

year for both the NIDO and the fixed design NIDO.  Hence, the design premium is simply 

the difference of the NIDO option premium and the fixed design premium. 
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3.2.2. Network Option Design Problem 

Maximizing the fixed design option value Φ7`a[7` , �7`b taking into account the whole 

time horizon T can be accomplished because there are no decision variables except in 

the base time t0.  Fast converging global heuristics are necessary because of the 

computational cost of one evaluation function, which is � �P ∗ -
Y7 ∗ ê>(O)�, where P is 

the number of simulation paths, T/Δt is the number of time states, and UE(N) is the 

computational cost of one user equilibrium assignment or network optimization which 

scales with the size of the network. 

 A heuristic for solving the NODP with continuous network design problem is 

demonstrated, leading to the continuous network option design problem (CNODP).  A 

radial basis function approach is adopted to solve this problem.  Chapter 5 deals in 

detail with this approach for solving the CNDP, so only a brief introduction is provided 

here. 

 Chapter 5 introduces a solution method for continuous network design problems 

based on the Metric Stochastic Response Surface (MSRS) method developed by Regis 

and Shoemaker (2007).  MSRS is a global stochastic optimization approach that can use 

radial basis functions (RBF’s) to intelligently guess the next point to evaluate using 

interpolation (MSRBF).  Their multi-start local MSRBF algorithm is shown to work 

extremely well for continuous, high-dimensional, multimodal, computationally 

expensive functions with box constraints.  Most importantly, it has been shown to 

converge faster than other non-derivative based heuristics such as genetic algorithm 

and simulated annealing, for functions with up to 14 dimensional variables.  In chapter 5 
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we show that the method performs significantly better than the genetic algorithm for 

network design problems with up to 31 dimensional variables for the Anaheim, CA 

network. 

 Using this approach, the solution algorithm would involve guessing an initial set 

of design solutions, solving the fixed design option value using the approach discussed in 

Section 3.2.1.7 for each element of the set, and then proceeding with the RBFCNDL 

algorithm discussed in Chapter 5. 

 

Algorithm 3.3 

1. Generate initial set of solutions as per RBFCNDL algorithm in Section 5.2.2. 

2. For each solution, apply Algorithm 3.2 to evaluate the fixed design option value, 

Φ7`a[7` , �7�b. 

3. Continue the RBFCNDL algorithm until the Nmax number of iterations are reached 

or a number of multiple local starts have converged. 

 

The solution is a lower bound for a flexible network design deferral option where future 

design decisions can be changed. 

 

3.2.2.1. Convergence 

The fixed design option value exists and can be found for a given network design.  The 

RBFCNDL algorithm requires the decision variables to be continuous variables, which 

they are for the CNODP.  Based on the convergence criteria of Regis and Shoemaker 
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(2007), this algorithm would probabilistically converge as the maximum number of 

iterations O
�3 → ∞.  The proof of convergence is provided in Appendix C. 

 

3.2.3. Ordered Link Investment Deferral Option Set 

The approach to solving this multi-option LSM from Gamba (2002) is to repeat the LSM 

from Longstaff and Schwartz (2001) from the last option in the ordered set h to the first 

option in the ordered set for each time state and simulation path.  Each ordered set is 

enumerated to obtain the exact multi-option LSM solution value.   

 

Algorithm 3.4 

1. Obtain �7�∗ ∈ ℝ|p̅| using a discrete network design solution, or creating a set of 

discrete projects µ7�∗ ∈ ℝ|¯| from a continuous network design solution, where 

µ7�∗ = oµ7�,2∗ , … , µ7�,|¯|∗ q and µ7�,�∗ = ∑ �7�,�∗�∈¯²  where 	̧ is a predefined jth project 

among |¸| projects and 8⋃ ; ∈ &̅: = o⋃ o⋃ ; ∈ 	̧q	∈|¯| q.   

2. For those links that are being considered for investment, determine the number 

of different combinations for ordering them.  Let ¹ = |¸|!. 
3. For each ordered set ℎ ∈ ¹, solve Eq. (3.15) using Gamba’s multi-option LSM 

method.  It should be the same as Algorithm 3.2, plus an additional loop at each 

time state for a sequenced evaluation of each jth option, going backwards from 

the last option in the ordered set h. 

a. For networks, a cumulative computation of the payoff for each additional 

link or project needs to be made for every time state tn and simulation 
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path ω.  For 5 projects, that means determining the system cost for the 

1st project at tn and ω, then for the first two projects, then first three 

projects, etc. 

b. The payoff value of the jth project is the difference ∑ W±¨,7`	¦×2 −
∑ W±¨,7`	X2¦×2 . 

c. Project options with payoffs that are less than zero are not treated as 

zero because they can contribute to the prior project option’s value; 

instead, if W±²,7` �� d[7` , µ±²,7`e� < 0 let W±²,7` �� d[7` , µ±²,7`e� =
W±²,7`hi �� d[7`hi , µ±²,7`hie� (1 + f)X2. 

d. When evaluating the decision rule, when W±²,7` �� d[7` , µ±²,7`e� +
Φ±²hi,7`a[7`b < (1 + f)XY7> ¶Φ±²,7`hia[7`hib·, the current option and all 

following options would have to be set to defer. 

e. Set Î±²(Í, �¥) = 1 for any pathwise decision to invest immediately at 

time tn.  

f. When the initial year is reached, for each jth option discount back the 

option value where the immediate investment decisions were made for 

all paths in P and take the average:  > ¶!Φ±²,7i d[7i(Í)eØ Î±²(Í, �¥) =
1· = ∑ í´²,V`dÉV`(î)eï (2Z6)Ê`

ã . 

g. Going backward from the final option, let: 

Φ±²,7� = max dW±²,7� , > ¶!ð±²,7i d[7i(Í)eØ Î±²(Í, �¥) = 1·e.   
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4. The option value is the maximum of the sum of option values obtained from 

each ordered set h, the solution to Eq. (3.16). 

 

The solution is a lower bound for a flexible network design deferral option where future 

design decisions can be changed. 

 

 

3.2.3.1. Convergence and Computational Cost 

Since the algorithm is just an extension of LSM, the same convergence criteria apply.  

However, the multi-option LSM needs to be evaluated for each option in an ordered set 

and the option value needs to be evaluated for each ordered set in H.  Although 

¹ = |¸|!, some of the combinations are repeated so that one set of ordered jth option of 

h = 1 at time tn can also be re-used for another ordered set h = 2.  This effectively makes 

the computational cost on the order of � �∑ |¯|!
	!(|¯|X	)!|¯|	×2 ∗ P ∗ -

Y7 ∗ ê>(O)�.  For 5 sets 

of links and 5 time periods with 300 sample paths, this is equivalent to 

O((5+10+10+5+1)*300*5*UE(N)) = O(46,500*UE(N)).  As a combinatorial problem there 

is still a challenge in solving this problem for large number of sets of links, and future 

research should address this need for larger network design considerations.  For 

example, if all ten links in the typical Sioux Falls example are treated as separate 

options, this could lead to a computational time of O(2046*300*5*UE(N)), which is 33 

times the computational cost from doubling the number of links from five to ten.   
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A possible method to address this combinatorial problem may involve using 

meta-heuristics or a two-step approach: the first step would involve a smaller number of 

sample paths as a sample to identify potential candidates, and then using the desired 

number of sample paths with only the candidates for a more rigorous solution in a 

second stage.  This method will be explored in future research. 

  

  

3.3. NUMERICAL EXAMPLE 

 

The real option analysis is applied to a common network example to provide a platform 

for comparing its results.  The Sioux Falls network as described, is referenced in Chen 

and Yang (2004) and Suwansirikul (1987), but is the classic example used by researchers 

in this field.  For specific details of the Sioux Falls network parameters used here and for 

future chapters, please refer to Appendix D. 

The solution to the standard CNDP with the baseline demand flows is obtained 

using IOA to compare with the performance of previous work done on Sioux Falls.  The 

da for the link improvements are shown in Appendix D.  A value of total system travel 

time (TSTT) = 75.942 was obtained here using a maximum of 100 iterations of Frank-

Wolfe and 1% objective value tolerance.  This is in comparison to a no investment user-

optimal cost of 101.171. 

  

 



www.manaraa.com

81 

 

3.3.1. Network Investment Deferral Option 

To test the NIDO model on the Sioux Falls network, consider the case where each of the 

552 OD pairs evolves independently as a geometric Brownian motion.  For simplicity, 

let’s assume that the drift parameter μrs = 0 for all OD pairs rs, and let’s consider 

continuous link expansions as the design variables.  Since we are looking at a multi-year 

setting with discounting factor and a stationary mean, we want to choose a conversion 

rate λ which would have a 1 VHT to $1000K NPV translation so that a budget of $5.5M 

would still equal to 5.5 VHT cost.   Let 

 

 Ì = 1000/ � 2
2X ii.�ó

� = 56.604 

 

The net present value of an immediate investment is: 

 

 OPE = (101.171 − 75.942)(56.604) − 5500 = 19,730 = $19.73� 

 

Under these deterministic settings, the positive NPV suggests that the decision-maker 

should invest in the network design immediately for a net payoff value of $19.73M.   

  

3.3.1.1. Number of Sample Paths 

Suppose instead that there is non-stationary uncertainty introduced into the OD 

demand.  Let the volatility of each OD pair be σrs = 0.35.  This means that the demand 
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for each OD pair is log-normally distributed such that ln dÉVhúV¿À
ÉV¿À e ~Oa[7��, 0.35√Δ�b.  As 

the length of time increases, the uncertainty in the forecast of the demand increases.   

One run of the LSM simulation algorithm with P = 300 sample paths and Π = 6 basis 

functions results in a distribution of options exercised shown in TABLE 3-2.  This result 

indicates that almost 70 percent of the time the optimal decision to exercise the 5-year 

investment option would lie within the first year of realization.   

 

TABLE 3-2. Sample Distribution of Simulated Option Exercises for T =5, P = 300, Π = 6, σrs = 0.35 

Time 

(yrs) 
Frequency Percent 

1 203 67.7% 

2 54 18.0% 

3 34 11.3% 

4 5 1.7% 

5 4 1.3% 

 

Thirty runs of the LSM algorithm for the NIDO value are conducted with P = 30 and P = 

300 sample paths to compare the variance as a function of sample paths.  The LSM 

algorithm uses the same Π = 6 basis functions determined as a reasonable number with 

a maximum obtained option value and minimum variance.  A five year deferral horizon 

similar to a five year TIP program is used with a 6% interest rate to reflect realistic 

transportation planning settings.  The results of the 60 total runs are plotted in FIGURE 

3-2.  The standard error decreases from 3.1% of the total expected value ($0.77M) at P = 

30 to 1.9% ($0.42M) at P = 300 sample paths.  The actual results for Π = 3 to 6 are 

included in Appendix E. 
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FIGURE 3-2. Option value from multiple runs at P = 30 and P = 300 sample paths with μ = 0 and 

σ = 0.35, using Π = 6 basis functions for LSM. 

 

Several conclusions can be drawn from this first test.   

First, the test shows that the algorithm converges for P = 300 sample paths for 

the example using a relative standard error of 2% as the tolerance.   

Second, the mean of the NIDO value at P = 300 is $22.6M, compared to the fixed 

design option value of $21.4M.  In other words, at a volatility of 0.35, the optimal 

decision is to defer whether or not there is flexibility to re-design the network, but 

keeping the flexibility would increase the value of the investment by $1.2M.  This is the 

value of the option to redesign the network.  If redesigning a network in the future 

would cost at least an additional $1.2M, then it is not worth it to keep this option open.  

This is the value of maintaining conditional alternatives instead of a single preferred 

alternative. 
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 Lastly, this option makes use of the deferral strategy in investment but other 

simple option strategies can be substituted in.  For example, a long term construction 

project with high demand volatility may consider abandonment. 

 

3.3.1.2. Volatility 

A test is also conducted of the option values as functions of the homogeneous OD 

demand volatility parameters.  As expected, the fixed design deferral option value 

would increase as the volatility increases, just as the NIDO with the network design 

premium would increase.  The volatility threshold lies somewhere near 0.30 for this 

particular example, as the optimal decision is to invest immediately if σrs < 0.30 and to 

defer otherwise. 

 The vertical gap between the NIDO value curve and the fixed design deferral 

value curve is the value of the network design premium.  This value appears to increase 

as volatility increases as well, which means that the NIDO value increases at a faster rate 

than the deferral option alone.  This makes sense since greater volatility would lead to a 

wider range of possible scenarios so the possibility for the current design to work just as 

well for all scenarios would diminish, ultimately resulting in a higher value to redesign. 
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FIGURE 3-3. Option value as a sum of NPV, fixed design deferral (FD), and network design 

premium (FN) as a function of volatility. 

 

At 0.35 volatility, the fixed design option value from the single run is $21.50M while the 

NIDO option value is $22.68M.   

 

3.3.1.3. Time Horizon 

The NIDO and fixed design deferral option values are plotted against a varying time 

horizon up to 20 years to show that the value increases as the time until option 

expiration is increased.  The same random seeds used to simulate the 0.35 volatility in 

Section 3.3.1.2 are expanded to 20 years here to have a common starting point. 

 

15

17

19

21

23

25

27

29

0% 10% 20% 30% 40%

O
p

ti
o

n
 V

a
lu

e
 (

$
M

)

Volatility

NIDO

Deferral Only



www.manaraa.com

86 

 

 

FIGURE 3-4. Option value as a sum of NPV, fixed design deferral (FD), and network design 

premium (FN) as a function of volatility. 

 

From 5 to 15 years, the option value appears to increase exponentially from $22.68M, 

so a logarithmic scale is used for the figure.  Between 15 and 20 years, the option value 

appears to have reached a steady state value due to the interaction of the 6% interest 

rate and the volatility of the demand flows with zero drift.  The results suggest that 

$900B is a steady state solution for an infinite time horizon that can be reached for an 

expiration period of 15 years or more.   

 

3.3.2. Network Option Design Problem 

As shown in FIGURE 3-5, Algorithm 3.3 is run for two local starts resulting in 266 option 

evaluations for Sioux Falls with 35% volatility, T = 5 years, P = 300, Π = 6, and using the 

same random seed as Section 3.3.1.2 for the OD simulation.   
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FIGURE 3-5. Option value convergence as a number of iterations of option evaluations. 

 

The maximum option value of $21.71M is obtained in the 255th iteration, which is the 

135th iteration of the 2nd local start.  Contrary to the IOA solution value of TSTT = 75.942, 

the link designs for this solution value result in a TSTT = 76.062.  This value converts to a 

static NPV = $19.61M, which is less than the static NPV of $19.73M from the NIDO 

model.  However, by deferring the fixed design the option value of $21.71M is higher 

than the $21.50M from the fixed design option with the IOA network design. 

 A comparison of the NIDO, NODP, and OLIDOS results for Sioux Falls is provided 

in Section 3.4.   
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3.3.3. Ordered Link Investment Deferral Option Set 

The NODP solution from Section 3.3.2 is considered as separate project options.  Instead 

of treating each of the 10 link investments as a separate option, the pairs of opposite 

direction links are combined into a set of |L| = 5 discrete projects to reduce 

computational cost: link 16 plus link 19, link 17 plus link 20, link 25 plus link 26, link 29 

plus link 48, and link 39 plus link 74.  The network is shown in Figure D-1 in Appendix D. 

 With five projects, there are 120 ordered sets to consider.  For each one, the 

multi-option LSM approach is used to solve the option value.  The same number of basis 

functions Π = 6 is considered.  The results of each enumerated ordered project set are 

shown in FIGURE 3-6. 

 

 

FIGURE 3-6. OLIDOS Value by Ordered Set. 
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The optimal ordered set is the 61st set: {3, 2, 5, 4, 1}, with a total option value of 

$78.67M.  On the contrary, the minimum value option solution is $40.12M, with an 

ordered set of {1, 4, 5, 3, 2} and an optimal decision to invest on only the first project 

and to defer the rest.  The results of the optimal solution are summarized in the table 

below. 

 

TABLE 3-3. Summary of Results from OLIDOS for NODP Solution with 35% Volatility, T = 5 

years, P = 300, Π = 6 

Project 

Order 
Links 

Static 

NPV ($M) 

Ordered Staging 

Premium ($M) 

Deferral 

Premium ($M) 

Option 

Value ($M) 
Decision 

3 25, 26 0.83 19.71 0.39 20.93 Defer 

2 17, 20 0.86 18.71 0.14 19.71 Defer 

5 39, 74 6.08 12.47 0.16 18.71 Defer 

4 29, 48 4.99 6.85 0.63 12.47 Defer 

1 16, 19 6.85 0.00 0.00 6.85 Forced Defer 

SUM  19.61 57.74 1.32 78.67  

 

 The decision is once again to defer all of the network design, but unlike the option value 

in Section 3.3.2, this solution includes the flexibility to invest and defer portions of the 

network design.  The option value of the last project is actually derived from immediate 

investment, but since that project can only be invested on if the prior project is invested 

on, it is forced to defer.  The full project order, total option value, and deferral decision 

are included in Appendix E. 

The solution OLIDOS provides two significant results.  First, the fixed ordering of 

link investments that provides the maximum option value is obtained using an exact 

method.  Second, the value of each of the link or project options is determined so that 

decisions can be made with regards to which link to invest immediately and which to 

defer to maximize the option value.   
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3.4. DISCUSSION 

 

The three models are summarized along with baseline link design values to compare the 

performance under the 0.35 volatility for a five year planning horizon.  The OLIDOS 

model is run for both the NODP solution as well as the IOA solution to compare the 

results. 

 

Table 3-4. Network-based Real Option Design Results with 0.35 Volatility, T=5, P=300, Π = 6 

Link Baseline IOA NIDO 

Fixed 

Design 

Option 

NODP 
OLIDOS 

(IOA) 

OLIDOS 

(NODP) 

16 0 5.3321 5.3321 5.3321 4.9599 5.3321 4.9599 

17 0 1.5323 1.5323 1.5323 2.4773 1.5323 2.4773 

19 0 5.3648 5.3648 5.3648 5.4582 5.3648 5.4582 

20 0 1.4891 1.4891 1.4891 2.2420 1.4891 2.2420 

25 0 2.8003 2.8003 2.8003 2.7431 2.8003 2.7431 

26 0 2.8635 2.8635 2.8635 3.3495 2.8635 3.3495 

29 0 4.6452 4.6452 4.6452 4.7494 4.6452 4.7494 

39 0 4.4403 4.4403 4.4403 3.8099 4.4403 3.8099 

48 0 4.7000 4.7000 4.7000 4.6190 4.7000 4.6190 

74 0 4.4140 4.4140 4.4140 4.0956 4.4140 4.0956 

Deterministic 

TSTT 
101.171 75.942 75.942 75.942 76.062 75.942 76.062 

Static NPV ($M) $0 $19.73 $19.73 $19.73 $19.61 $19.73 $19.61 

1
st

 Project N/A N/A N/A N/A N/A $20.99 $20.93 

2
nd

 Project N/A N/A N/A N/A N/A $19.89 $19.71 

3
rd

 Project N/A N/A N/A N/A N/A $18.90 $18.71 

4
th

 Project N/A N/A N/A N/A N/A $12.28 $12.47 

5
th

 Project N/A N/A N/A N/A N/A $6.71 $6.85 

Option Value 

($M) 
N/A N/A $22.68 $21.50 $21.71 $78.77 $78.67 

Deferral 

Premium 
N/A N/A $1.77 $1.77 $2.10 $1.26 $1.32 

Network Design 

Premium 
N/A N/A $1.18 N/A N/A N/A N/A 

Ordered Staging 

Premium 
N/A N/A N/A N/A N/A $57.78 $57.74 

Strategy N/A Invest 
Defer and 

Redesign 
Defer Defer 

Defer All 

Links 

Defer All 

Links 
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The IOA column refers to the solution to the CNDP using IOA approach for Sioux Falls.  

The NIDO column computes the option value of the IOA design solution, assuming at 

each time state the IOA is applied to find the optimal design then.  The NIDO option 

value $22.68M includes the flexibility to defer and re-design the network.  The fixed 

design option column includes only the flexibility to defer and results in a slightly lower 

option value of $21.50M. 

The Fixed Design Option is the same as NIDO, but constrains the design to be the 

initial design at all time states.  NODP is an approximate optimal design solution using 

an RBF heuristic to maximize the option value as a function of both the design variables 

and the deferral decision.  This option value of $21.71M is the maximum that can be 

obtained when the decision-maker can only defer a design under demand uncertainty. 

Lastly, the OLIDOS model is run for the IOA design as well as the NODP design, 

re-computing the option values assuming the designs are de-coupled into five projects 

each.  The option value of all the link projects together is $78.77M when using the IOA 

initial design and all five sets of links need to be deferred. 

 By using real option methodologies, it is possible to expand a stochastic network 

design problem to include flexibility to defer, flexibility to re-design the solution, or 

flexibility invest in each subset of links separately.  It is also possible to optimize the 

design with a deferral decision with regards to the value of the investment opportunity. 
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“Human history becomes more and more a race between education and catastrophe.” – 

H.G. Wells 

 

CHAPTER 4 MOBILE SERVER RELOCATION FOR WILDFIRE 

PLANNING 

 

 

The use of time series data for flexible management of transportation networks has 

been shown with real option methodologies for network design problems under 

uncertainty in Chapter 3.  Characterizing time series data as non-stationary stochastic 

processes can also provide further insight to other network models such as facility 

location problems.  By incorporating non-stationary stochastic processes in a facility 

relocation model, the optimal decision to relocate a set of servers can incorporate the 

hysteresis or inertial band due to volatility or asymmetric switching costs.  This concept 

is explored in Chapter 4 using a wildfire planning setting, with generalizations for any 

resource allocation strategies in a network setting.   



www.manaraa.com

93 

 

4.1 BACKGROUND 

 

As discussed in Chapter 1, there is currently no systematic operational level model for 

using daily fire weather data to optimally redeploy resources.  Four goals are achieved in 

this research.  First, fire weather data are modeled as independent mean reverting 

processes, and results are shown for the estimation of the parameters for each of the 

CDF units (introduced in Chapter 1) in California for which data was available. Second, a 

new static resource allocation model that relies on seasonal average fire weather data is 

developed.  Third a chance-constrained dynamic fire resource allocation model that 

relies on independent observations of fire weather data as first order Markov processes 

is developed. Note that the model is dynamic in the sense that the relocation model 

depends on the previous time-state and the updated fire weather data. The dynamic 

model differs from the static one in that it can incorporate forecasts of future fire 

conditions which are based on the mean reverting processes mentioned above. Finally, 

the performance of these two new models is compared against actual allocations using 

data from July through August 2006 and 2007.  

The analysis shows that the dynamic resource relocation model using forecasts 

of future conditions can obtain more cost effective results than the methods currently 

applied as well as both the static location model and the dynamic relocation model with 

no forecasts. Explicitly incorporating forecasts of short term future demand in the 

relocation program can incorporate the value of flexibility in the positions of the 

resources so that excess relocations can be avoided. 
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4.2 LITERATURE REVIEW 

 

4.2.1. Fire Weather Data 

Fire weather data are important inputs into the decision-making processes of fire 

management authorities. For example, in Australia, the Bureau of Meteorology provides 

fire weather data as part of a national framework for fire protection. The senior 

meteorologists provide two sets of day to day operational outputs for each region, a 

public set as well as more private, detailed information for decision support to fire 

authorities (Gunasekera et al, 2006). In Canada an historical Large Fire Database has 

been developed which includes information on fire location, start date, final size, cause 

and suppression action for all fires larger than 200 hectares (2 km2 ~ 500 acres) in area 

for Canada for the 1959-1999 period (Stocks et al, 2003, Amiro et al, 2004).    

Until the last few decades, fire authorities relied only on simple tools such as 

relative humidity or maximum daily temperature to describe fire weather.  In the last 

few years, multiple models and indices were developed to suit the needs of local 

forecasters and fire authorities.  Today, different land management agencies across the 

U.S. in both the public and private sector utilize fire indices which rely on some form of 

atmospheric input.  Several popular indices include the Canadian Fire Weather Index 

(CFWI), the Keech-Byram Drought Index (KBDI), the Haines Index (HI), the Fosberg Fire 

Weather Index (FFWI), and the Davis Stability Index. 

Until the last few years, however, only the HI was tested and scientifically 

validated by the peer-review process (Potter et al, 2003).  The HI produces an integer 
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between 2 and 6 with higher values indicating dry, unstable atmosphere conducive to 

large wildfires, and is used as an indicator that small fires could become large and 

erratic.  The HI is currently accepted by many fire weather forecasters and fire managers 

as a useful tool for evaluating atmospheric conditions in fire fighting on any given day.  It 

was shown that HI works well for plume-dominated fires, but not so much for wind-

driven fires such as the Santa Ana winds in California (Potter and Martin, 2001). 

      Several studies done in the past for the state of California have relied on other 

indices based on the National Fire Danger Rating System (NFDRS), such as Gruelich and 

O’Regan (1982) and Haight and Fried (2007).  Among the indices included in the NFDRS 

are the Energy Release Component (ERC) and the Burning Index (BI).  The BI is an index 

used to relate the potential amount of effort needed to contain a single fire. The BI can 

be used as a guideline for staffing levels (ratings from 1 for lowest demand to 5 for the 

highest) (NFDRS, 2008). 

 

4.2.2. Facility Location Problems 

Facility location problems represent a rich and broad field with many different sub-

problems applicable to a multitude of industries, both private and public. Among the 

literature reviews available, Owen and Daskin (1998), Drezner (2002, especially the 

chapter by Marianov and Serra) and Snyder (2006)  each provide a very broad summary 

of the development of this field of problems, including dynamic models, public sector 

models, stochastic models, and scenario planning models.  Brotcorne et al (2003) review 

ambulance location models specifically, comparing application success stories such as 
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Church and ReVelle’s (1974) Maximal Cover Location Problem (MCLP) implemented in 

Austin, Texas, as well as Daskin’s (1983) Maximal Expected Covering Location Problem 

(MEXCLP) implemented in Bangkok in 1987.  In both cases, cost savings and average 

response times improved. Another excellent paper discussing emergency vehicle 

deployment is Goldberg (2004).  

Berman and Odoni (1982) formulated a dynamic p-median relocation problem 

that responds to changes in the state of the network.  The objective is to minimize 

steady-state expected service time and cost of relocations taking into account all the 

potential future allocation states.  However, that formulation can quickly become 

intractable when a large number of facilities are involved. Berman and LeBlanc (1984) 

expanded on the dynamic model by making the travel times stochastic, and treating 

peak and off-peak periods as separate states.  As the relocation cost increases due to 

changing states and travel times, the location/relocation strategy changes.  With 

increasing relocation costs, the optimal strategy will involve less relocations.   

      Facility location problems have been used to address fire emergencies for 

several decades.  According to Badri et al (1998), insurance service offices use the 

distance between customers and fire companies to rate the fire protection capabilities 

in different cities.  Kolesar and Walker (1974) developed a computationally efficient 

heuristic algorithm to relocate firefighters based on calls received in districts within New 

York City.  Their algorithm included an inconvenience cost associated with the 

relocations, and provided rules for constraints, such as considering relocations only for 
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fires lasting longer than half an hour.  Other urban fire covering models have been 

developed in the last few years as well.   

However, an urban fire location model differs significantly from one applicable 

to wildland fires, where simultaneously occurring fires are less likely but a single fire 

may require multiple fire resources. A wildland fire location model should require the k 

closest facilities to cover a demand node.  Marianov and Serra (2002) show that the p-

median problem (PMP) can be modified by adding a constraint for a minimum demand 

threshold level to require a minimum number of servers to cover each node.   

Co-location is locating multiple servers at a node, and it is another important 

feature to consider in wildland fire and other large-scale disaster resource models. 

Marianov and Revelle (1991) develop a facility co-location covering problem in which 

multiple response vehicles can be deployed to a single location. However, the purpose 

of co-location in the urban application is to deal with probabilities that the servers 

would be busy with another event. Their formulation indicates whether the kth server is 

located at site j using a binary variable for each server. 

 

4.2.2.1. Wildland Fire Resource Location and Deployment Models 

According to Martell et al (1998), there remain many important challenges for fire 

deployment such as having regional fire duty officers decide each day how many fire 

fighters and transport vehicles should be deployed at initial attack bases.  There is such 

a need because the 2-5% of fires that escape initial attack can cause a disproportionate 

amount of damage (MacLellan and Martell, 1996). 



www.manaraa.com

98 

 

The problems in regional wildland fire resource location and deployment such as 

air tanker initial attack planning is that one air tanker may not be enough to cover a 

potential fire, and there is typically more than one air tanker co-located at an airbase.   

Static location models have been developed using MCLP to locate wildland fire 

resources.  Dimopoulou and Giannikos (2001) conducted such a study using an MCLP 

formulation.  Haight and Fried (2007) is a recent example of using a variant MCLP 

formulation with scenario planning to address uncertainty.  They propose a multi 

objective covering model to deploy fire engines to stations that require a certain 

number of resources on a particular day.  The model relies on the output of a fire 

occurrence simulator to determine the probability that a fire occurs at a node and also 

the distribution associated with the number of resources needed to contain the fire.  

Their formulation allows multiple resources to cover a node with co-location 

considered.   

The trade-off between using a MCLP versus a PMP is that the PMP has an order 

of magnitude more decision variables but considers a more detailed objective value (in 

our case it’s the travel time of air tankers instead of the sum of binary coverage 

variables).  For example, if there are two nodes A and B that are within coverage 

distance and node A has demand requirement of 3 air tankers versus 1 from node B, an 

MCLP cannot differentiate between a solution of placing 4 air tankers on A or B (both 

cover the nodes).  On the other hand, the PMP would prefer a solution with 3 air 

tankers on A and 1 air tanker on B because they have shorter deployment times.  This 
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differentiation is especially important in comparing the performance between a static 

model and a dynamic relocation model. 

 State-dependent probabilistic models, such as those shown in Gruelich and 

O’Regan (1982) and MacLellan and Martell (1996), consider the deployment of 

resources given transition probabilities from one state to another.  While this approach 

allows multiple resources to be assigned to a demand node, it does not share the 

resources across nodes the way a facility location model would.  

 Several papers assume or acknowledge that fire weather data can be modeled as 

a first order Markov process (Gruelich and O’Regan, 1982, MacLellan and Martell, 1996), 

and Martell (1999) proves this is the case for the Fire Weather Index in Ontario.  Martell 

concludes that if Markov models can be used to model day to day changes in fire danger 

rating indices, the properties of Markov chains can be exploited to improve fire 

management planning. 

 

 

4.3 PROBLEM STATEMENT 

 

The problem of allocating air tankers to air bases over the course of a wildfire season to 

minimize the cost and time of deploying such air tankers to actual fires is examined.  By 

using the stochastic process to forecast near term future conditions, the model 

incorporates hysteresis in the solution so that the value of pre-positioning resources for 

potential future occurrences can be explicitly accounted.   While the numerical 
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examples and problem are defined for air tanker basing, it can also be generalized for 

any resource location and relocation modeling for regional networks with non-

stationary stochastic demand nodes that may require multiple servers to cover. 

 

 

4.4 MODEL FORMULATIONS 

 

4.4.1. Demand 

Let the state of the network be defined by the demand levels at each node at a discrete 

point in time (a single day), where these demand levels (resource allocations based on 

fire weather, not on actual fire occurrences) are stochastic on a day-to-day basis for a 

particular season, such as July through August each year.   

Since the fire weather indices can be assumed to be first order Markov 

processes, the BI at each node is modeled as a discretized mean-reverting Ornstein-

Uhlenbeck (O-U) process.  Although O-U is a continuous process, it can be shown that a 

discrete AR(1) process can converge weakly to the O-U process (Tanaka, 1996). Note 

that we start with this model rather than using the AR(1) process directly to allow for 

the possibility of the availability of richer continuous data in the future.  

If the BI follows a discrete mean-reverting O-U process, then it can be 

represented by Eq. (4.1) below using three parameters: mean reversion rate αj, mean μj, 

and volatility σj. 
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,[7	 = D	a¡	 − [7	b,� + ¢	,=7          (4.1) 

 

Where j is the demand node, t is a time-state, dWt is an increment in the Wiener 

process (also known as Brownian motion) which is assumed to be i.i.d. N(0, t), and [7	 is 

the fire weather index value at time t for node j.   

The BIs for all nodes are assumed to be independent of each other, although in 

reality there should be some relationship between the BI and actual fire occurrences for 

adjacent nodes depending on the distance and geography separating the nodes.  For a 

large regional model like the state of California however, this interdependency can 

reasonably be relaxed.   

 The parameters of Eq. (4.1) can be calibrated using a standard least squares 

regression such as the one described in Van den Berg (2008) for each demand node 

based on historical data. 

 Although static location models do not need to make use of this characterization 

of fire weather indices since they can rely on seasonal averages, the proposed dynamic 

relocation model can incorporate this information in its chance constraint formulation 

to introduce anticipation into the model. A static location model is considered first, 

followed by modifications to that model into the proposed relocation model. 
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4.4.2. Static k-server p-Median Problem (KPMP) 

Let a network be defined as G(N,A) of N nodes and A arcs with fixed travel times and 

demand for fire protection be linearly dependent upon the Burning Index (BI) value. Let 

there be a fixed number of fire resources, P.   

The objective is to use a PMP model that includes the minimum demand 

thresholds discussed by Marianov and Serra (2002) while also including co-location.  

Instead of enumerating each k
th server with a binary variable, integers are used to 

represent the number of servers located at a node. Let’s call this model formulation the 

k-server p-Median Problem (KPMP), where p servers are located such that the ki closest 

servers are assigned to each demand node i and where co-location is possible. 

 

Min     ∑ ∑ ,�	û�		�             (4.2) 

Subject to 

 û�	 − Ý	 ≤ 0, ∀�, %          (4.3) 

 ∑ û�		 ≥ ��, ∀�          (4.4) 

 ∑ Ý		 = P           (4.5) 

 Ý	 ≥ 0, ∀%, û�	 ≥ 0, ∀�, %, û�, Ý	�N��ü��        (4.6) 

 

 

 

 

 



www.manaraa.com

103 

 

Where 

 Zij = integer number of servers (air tankers) at node j covering node i 

 dij = matrix of distances from i to j 

 Xj = integer number of servers (air tankers) based at node j 

 ki = minimum demand threshold for number of servers (air tankers) covering  

node i 

 P = the number of servers (air tankers) in the network 

 

In this model, the demands at each node are shifted into the constraints and the 

decision variables are changed from binary variables to integer variables.  Eq. (4.2) 

minimizes the distances of the closest servers in terms of deployment time.  The 

objective will naturally force all the Zij’s to be zero unless they are the k closest servers.  

Eq. (4.3) guarantees that for a given base node, the number of servers assigned to cover 

any individual demand node does not exceed the number of servers available at that 

base node.   Eq. (4.4) forces the k closest servers to a node i to be chosen, whether they 

are at the same node j or at different nodes.  Eq. (4.5) and (4.6) are the facility budget 

constraint and non-negativity constraints.  The Burning Index (BI) is assumed to be 

reasonably represented by the linear equation shown in Eq. (4.7): 

 

�� = �[�            (4.7) 
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Where qi is the average value of the BI over a given time period (e.g. a two month 

season), and δ is a scaling parameter to convert the average BI to average air tanker 

staffing needs. For the static model the seasonal mean value of the BI’s are used. Since 

the staffing levels are unknown or may vary depending on location, a reasonable value 

of δ is chosen that is high enough to differentiate changes in the BI values but low 

enough to avoid hitting the maximum P facilities ceiling. In addition, the relationship 

between BI and air tankers needs is assumed to be linear. This is backed up by the 

National Fire Danger Rating System provided by the National Oceanic and Atmospheric 

Administration (NFDRS, 2008).  Naturally, if this function were better understood then 

additional relevant information could easily be incorporated into the model.   

The calibration of δ is important for actual implementation, but for comparison 

between different model performances, a reasonable value should suffice. Note that a 

promising topic of future research would be to examine alternative methods for 

modeling and calibrating this demand constant δ.  

There are N(N+1) decision integer variables and 2N
2+2N+1 constraints in this 

problem.  If the ki are rounded up to integers beforehand, the problem would have only 

N integers and N2 continuous variables. The integer ki’s will cause the Zij’s to naturally 

converge to integer solutions unless two nodes share precisely the same distance value.  

Even then, the objective value would be the same for either case.   

For example, consider a 3-node, serially linked network with P = 2, equal link 

lengths and servers that can only be located at node 1 or 3.  Let’s say k2 = 2. The set of 
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optimal solution results would be {Z21, Z23} = {[0,2], 2 – Z21}, except that constraints (4.3) 

and (4.5) would force the feasible optimal solution to be {Z21, Z23}={1,1}.   

As this is a more complex version of the p-median problem, it is also NP-

Complete.  A branch and bound approach can be used for the simplified California 

network shown in the example, but for more complex problems with many additional 

decision variables a heuristic will be necessary. 

 

4.4.3. Chance-constrained Dynamic k-server Relocation Problem (CDKRP) 

Instead of a static, seasonal location model, consider a day-to-day model where the 

resource basing relocation decisions need to be made.  The demand in the static model, 

ki, is now a function of a stochastic variable qi representing a fire weather index that 

changes day-to-day. 

A chance-constrained dynamic relocation formulation of the KPMP is developed 

to minimize the deployment time for each time-state and to consider relocation if the 

benefit of a relocation is greater than the cost of transportation. The relocation is 

determined from anticipating the expected deployment times over a forecast time 

horizon T (e.g. 7-day forecast) based on the current day’s fire weather data.  In other 

words, if the fire weather station at some node updates its BI value to a significantly 

high value, it is more likely to be high in the next T days depending on its characterized 

mean-reversion process.   

The idea of optimizing the locations based on multiple time periods is similar to 

one proposed by Repede and Bernardo (1994). Their model, referred to as the 
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TIMEXCLP approach, considers an expected covering problem for multiple time periods. 

The CDKRP uses a p-median problem where the future demand is obtained from the 

expected value of the demand using the mean-reverting process. The following model is 

proposed, which shall be called a Chance-constrained Dynamic k-server Relocation 

Problem (CDKRP): 

 

Φ7 = miný ∑ ∑ ∑ ,�	û�	þ	�7Z-þ×7 + Ì ∑ ∑ *�������        (4.8) 

Subject to 

 û�	þ − Ý	7 ≤ 0, ∀�, %, � ∈ ?�, � + èC        (4.9) 

 ∑ û�	þ ≥ min(P, >g�	þj + 1.645�¢	√� − �	 , ∀�, � ∈ ?�, � + èC   (4.10) 

 ∑ Ý	7	 = P           (4.11) 

 −'� − Ý�7X2 + Ý�7 ≤ 0, ∀�         (4.12) 

 −�� + Ý�7X2 − Ý�7 ≤ 0, ∀          (4.13) 

 ∑ ���� = '� , ∀�          (4.14) 

 ∑ ���� = ��, ∀           (4.15) 

 Ý	7 ≥ 0, ∀%, �, û�	þ , Ý	7 , û�	þ  �N��ü��          (4.16) 

 ��� ≥ 0, ∀�,             (4.17) 

 

Where 

Φt is the expected present and future savings in deployment time at time-state t 

t is a time-state from 0 up to the end of the season 

T is a forecast horizon used for anticipating short term demand 
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 û�	þ  is an integer number of air tankers at node j covering node i at time-state τ ≤ t+T 

Ý	7  is an integer number of air tankers based at node j at time-state t 

dij = matrix of distances from i to j 

�	þ = minimum demand threshold for number of servers (air tankers) covering node i 

λ is a scalar conversion of the relocation cost to the value of improved deployment time 

crs is the cost of transport from node r to node s 

Yrs is the flow from node r to node s if a relocation occurs 

Sr is a dummy variable for the surplus air tankers 

Ds is a dummy variable for the demand for air tankers 

 

Eq. (4.8) and (4.9) are similar to Eq. (4.2) and (4.3) except they include the time 

dimension and incorporate the additional weighted cost of relocation as a Hitchcock 

Transportation Problem (Sheffi, 1985).  To account for the volatility in the demand, 

chance constraints with 90% likelihood of meeting the stochastic demand are used.  In 

other words, Eq. (4.10) represents the Pra∑ û�	þ	 − �	þ ≥ 0.90b for each time-state τ.  

Since the demand variables are Wiener processes that follow independent normal 

distributions with variance E;�gℎ	þj = (� − �)¢	4, Eq. (4.10) can be used to capture the 

chance constraints.  An additional condition in Eq. (4.10) is included for situations where 

the chance constraint exceeds the maximum number of air tankers available so that the 

solution will remain feasible.  Eq. (4.11) is a budget constraint.   

For air tanker relocation costs, the minimum cost relocation path should be 

taken, subject to constraints Eq. (4.12) – (4.15).  Eq. (4.12) – (4.13) assigns the 
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differences in facility locations to supply and demand at each node using dummy 

variables.  Eq. (4.14) – (4.15) are flow conservation constraints.  The remaining 

constraints are non-negativity and integer constraints.  The need for relocation will be 

determined if there is a difference between Ý	7X2 and Ý	7  for any node j.  This leads to a 

tradeoff in the objective function between minimizing deployment time to cover fire 

outbreaks versus minimizing the costs of relocation. 

Although no monetary value is used for decision-making here, a conversion rate 

of λ = 1 may not be appropriate because one unit is in terms of air tanker transport cost 

while the other is the risk of loss due to the time it takes for air tankers to make an 

initial attack on a fire.  Many other costs are not directly accounted for though careful 

selection of the value of λ could in fact account for these.   In the numerical test, several 

λ values are compared with July to August 2006 and 2007 observed fire weather data 

and observed fire occurrences.   

As a relocation problem with chance constraints, this problem can still be solved 

with the same branch and bound algorithm as for KPMP.  The problem needs to be 

solved once for each day of the season instead of just once for the whole season, and 

then daily averages can be computed to compare the objective values.  The number of 

Zij variables is increased by T-t times, but the number of Xi variables remains the same.  

If the ki are rounded up to integers, the problem remains a mixed integer program with 

N integer decision variables and N
2(T-t+1)+2N continuous variables that would naturally 

converge to integer values.   
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Note that compared to Berman and Odoni’s (1982) work, the use of chance 

constraints with independent demand nodes allow the problem to remain tractable for 

the network and number of facilities used in the numerical test in Section 4.5.  

Nevertheless, the mixed integer program becomes immense if long-term forecast such 

as a 2-month horizon is considered (and may be unrealistic in any case – it’s the same 

reason weather forecasters do not provide 2-month weather forecasts) so smaller 

increments are considered, such as 3-day and 7-day forecasts. 

FIGURE 4-1 presents a conceptual representation of how the models respond (or 

in the case of static location model, don’t respond) to changes in fire prediction data day 

by day.  The forecasting feature of the dynamic relocation models with 3- and 7-day 

horizons is depicted in the bottom tab as a trajectory of the stochastic weather data.  By 

incorporating this forecasting, there’s anticipation built into the model, which in turn 

reduces costs from excess relocations.  This conclusion can be drawn from the following 

numerical test. 
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FIGURE 4-1. A conceptual illustration of the three models
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Air tanker initial attack deployment is chosen as an example of California wildland fire 

operation to analyze because the air tankers can fly from any one node to another, so 

the allocation problem will be kept simplified to a transportation problem of N nodes to 

nodes.  Additionally, air tankers can feasibly aid other regions in the state so a 

regional scenario with large scale fire occurrences can be tested against. 
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 For this numerical test, the six contract counties are omitted and only the 

counties with air bases are included in the network.  Since no data could be found for 

fire weather data stations at SCU and NEU, those two CDF’s are also omitted.  The 

remaining 12 CDF’s are shown below. The acronyms FFS and AAB refer to forest fire 

stations and air attack bases, respectively.  The fire weather data is obtained from the 

FFS locations and the travel distances are based on the AAB locations.  Details of the 

distances are provided in Appendix F.  

 

1. BEU – San Benito-Monterey (FFS @ Hollister, AAB @ Hollister) 

2. BTU – Butte (FFS @ Cohasset, AAB @ Chico) 

3. FKU – Fresno-Kings (FFS @ Hurley, AAB @ Fresno) 

4. HUU – Humboldt-Del Norte (FFS @ Alder Point, AAB @ Rohnerville) 

5. LNU – Sonoma-Lake-Napa (FFS @ Santa Rosa, AAB @ Sonoma) 

6. MEU – Mendocino (FFS @ Laytonville, AAB @ Ukiah) 

7. MVU – San Diego (FFS @ Julian, AAB @ Ramona) 

8. RRU – Riverside (FFS @ Beaumont, AAB @ Hemet) 

9. SHU – Shasta-Trinity (FFS @ Redding, AAB @ Redding) 

10. SLU – San Luis Obispo (FFS @ La Panza, AAB @ Paso Robles) 

11. TCU – Tuolumne-Calaveras (FFS @ Green Spring, AAB @ Columbia) 

12. TUU – Tulare (FFS @ Milo, AAB @ Porterville) 
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FIGURE 4-2. CDF Air Bases in California (GIS data from 
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The locations of these air bases are shown in FIGURE 4-2.  Because not all the air base 

CDF’s are being included in the test network, not all the air tankers will be used.  Out of 

the 23 air tankers contracted among the CDF’s, 20 of them are located in the air bases 

being analyzed in the test network. 

The CDF owns and operates S-2T air tankers, which can each carry up to 1200 

gallons (4542 L) of retardant and have maximum operating speeds of 270 mph (435 

kph).  For the purposes of this experiment, the assumed average speed is 250 mph (402 
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2T air tankers, which can each carry up to 1200 

gallons (4542 L) of retardant and have maximum operating speeds of 270 mph (435 

eriment, the assumed average speed is 250 mph (402 
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kph). These values are used to calculate the dij values in the CDKRP, which are travel 

times in units of hours.  

A demand parameter δ = 1/7 is chosen empirically as the linear factor to convert 

the BI to air tanker demand, although in a real application it should be calibrated to 

match the CDFs’ average air tanker response needs to the staffing levels from the 

NFDRS.  Using the demand parameter, a mean BI of 30 would translate to a 4-5 air 

tanker demand threshold for the KPMP. 

 

TABLE 4-1. California Test Network with Least-Squares Estimated Parameters  

CDF Unit Name AAB FFS 
Mean 

BI 

Reversion 

Rate 
Volatility R

2
 

BEU 
San Benito-

Monterey 
Hollister Hollister 29.09 0.4427 8.5231 0.39 

BTU Butte Chico 
Cohasset 

RAWS 
72.91 0.3056 25.8443 0.55 

FKU Fresno-Kings Fresno Hurley RAWS 68.26 0.1567 15.7480 0.74 

HUU 
Humboldt-Del 

Norte 
Rohnerville Alder Point 39.09 0.2568 5.3092 0.61 

LNU 
Sonoma-Lake-

Napa 
Sonoma Santa Rosa 33.58 0.6400 11.8233 0.29 

MEU Mendocino Ukiah Laytonville 43.39 0.2143 4.8636 0.66 

MVU San Diego Ramona Julian 69.49 0.1411 26.0423 0.76 

RRU Riverside Hemet Beaumont 35.82 0.4806 12.7786 0.42 

SHU Shasta-Trinity Redding Redding 39.82 1.2090 16.3320 0.09 

SLU San Luis Obispo 
Paso 

Robles 
La Panza 38.29 0.7480 13.3935 0.22 

TCU 
Tuolumne-

Calaveras 
Columbia Green Spring 36.28 0.9380 11.7410 0.15 

TUU Tulare Porterville Milo 28.42 0.2204 5.4760 0.72 

 

 

TABLE 4-1 shows the network of air tanker bases in more detail.  BI data was collected 

for each FFS from July through September, from 2001 through 2006 from Fire and 

Weather Data made available by the U.S. national wildfire coordinating group 
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(http://www.nwcg.gov/) and using the FireFamily Plus software.  A sample output is 

shown in Appendix F.  The reversion rate α and volatility σ for each demand node were 

estimated. The R
2 values vary quite significantly by location, which suggests there are 

many other node-specific factors that can come into play in fitting the BI data to a 

mean-reverting process.   

A major assumption is made that the FFS weather stations chosen for each of the 

CDF units are representative of the state of fire weather for the whole unit.  While this 

assumption may be invalid for especially large regions, the same dataset is used for both 

models so that initial comparisons between a static model and a dynamic model can be 

made.  Further research should look at multiple FFS weather station data sources to 

represent CDF units. 

 

4.5.1. Static Location Model 

Using the mean BI data, a static location basing plan was developed for the period of 

July 1st through August 31st for 2006.   

In TABLE 4-2, the actual numbers of air tankers currently allocated to those 12 

nodes are shown on the second right-most column, obtained from CDF (2008). The 

KPMP solution has a total deployment time (objective value) of 31.46 air tanker-hours 

needed to meet the average seasonal demand constraints, whereas the actual locations 

require 34.17 air tanker-hours. The difference in expected deployment time is 8%. 
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TABLE 4-2. KPMP Solution, 2006 

Node # CDF 
Demand 

Constraint 

KPMP No. 

Air Tankers 

KPMP 

Deployment 

Times 

Actual No. 

Air Tankers 

Actual 

Deployment 

Times 

1 BEU 4.16 1 1.66 2 1.44 

2 BTU 10.4 2 5.44 1 4.58 

3 FKU 9.8 3 4.45 1 4.31 

4 HUU 5.58 0 2.80 1 2.41 

5 LNU 4.8 1 0.95 2 1.10 

6 MEU 6.2 4 1.48 2 1.92 

7 MVU 9.9 0 5.52 2 8.34 

8 RRU 5.12 6 1.50 2 2.70 

9 SHU 5.69 0 2.16 2 1.78 

10 SLU 5.47 0 2.16 2 1.80 

11 TCU 5.18 1 2.32 2 2.12 

12 TUU 4.06 2 1.02 1 1.67 

 TOTAL  20 31.46 20 34.17 

 

 

4.5.2. Dynamic Relocation Model 

Initial results using different conversion rates between relocation cost to deployment 

cost, λ = 0.10, 1.0, and 10.0, were obtained for the relocation model based on observed 

fire weather for the months of July and August in 2006 and 2007.  Two different forecast 

horizons were used, a 3-day forecast and a 7-day forecast.  In addition, a 0-day forecast 

is obtained to represent a No Forecast model that uses only the current day’s values.  

The results are shown in TABLE 4-3 and TABLE 4-4 for 2006 and 2007, respectively. 

 

 

 



www.manaraa.com

116 

 

TABLE 4-3. Dynamic Relocation Results for July-Aug 2006 

NO FORECAST 

λ 

KPMP Avg Daily 

Deployment Time 

CDKRP Avg Daily 

Deployment Time 

CDKRP No. of Times One or 

More Relocations Occur  

CDKRP Seasonal 

Relocation Costs 

0.1 57.687 50.295 58 6.315 

1 57.687 51.435 42 24.516 

10 57.687 57.687 0 0 

3-DAY FORECAST 

λ 

KPMP Avg Daily 

Deployment Time 

CDKRP Avg Daily 

Deployment Time 

CDKRP No. of Times One or 

More Relocations Occur 

CDKRP Seasonal 

Relocation Costs 

0.1 57.687 55.434 55 3.597 

1 57.687 56.261 33 13.535 

10 57.687 55.926 4 17.300 

7-DAY FORECAST 

λ 

KPMP Avg Daily 

Deployment Time 

CDKRP Avg Daily 

Deployment Time 

CDKRP No. of Times One or 

More Relocations Occur 

CDKRP Seasonal 

Relocation Costs 

0.1 57.687 56.653 32 1.802 

1 57.687 57.299 9 5.446 

10 57.687 57.115 3 21.000 

 

 

TABLE 4-4. Dynamic Relocation Results for July-Aug 2007 

NO FORECAST 

λ 
KPMP Avg Daily 

Deployment Time 

CDKRP Avg Daily 

Deployment Time 

CDKRP No. of Times One or 

More Relocations Occur 

CDKRP Seasonal 

Relocation Costs 

0.1 101.582 90.908 62 7.916 

1 101.582 93.079 48 30.992 

10 101.582 101.582 0 0 

3-DAY FORECAST 

λ 

KPMP Avg Daily 

Deployment 

Time 

CDKRP Avg Daily 

Deployment 

Time 

CDKRP No. of Times One or 

More Relocations Occur 

CDKRP Seasonal 

Relocation Costs 

0.1 101.582 83.613 56 4.133 

1 101.582 82.882 37 16.929 

10 101.582 95.245 3 13.900 

7-DAY FORECAST 

λ 

KPMP Avg Daily 

Deployment 

Time 

CDKRP Avg Daily 

Deployment 

Time 

CDKRP No. of Times One or 

More Relocations Occur 

CDKRP Seasonal 

Relocation Costs 

0.1 101.582 90.119 47 2.658 

1 101.582 86.987 28 11.489 

10 101.582 89.863 1 21.000 
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The “Avg Daily Deployment Time” columns represent the expected deployment times 

each day for the minimum demand thresholds defined by the observed fire weather.  

Note that the KPMP Avg Daily Deployment Times in 2006 are in actuality much higher 

than what is computed for the seasonal average of 31.46 from TABLE 4-2.  This is the 

result of the fluctuations in the observed fire weather during the 62-day season.  Also 

note that in 2007 the general fire weather was more severe, leading to higher 

deployment times.   

 For example, with respect to the “CDKRP No. of Times One or More Relocations 

Occur”, there were 58 instances when one or more relocations were required in the two 

month period in 2006 for λ = 0.1 based on the top row of TABLE 4-3. 

 The “CDKRP Seasonal Relocation Costs” represent the total costs accrued in the 

two months due to all the relocations, adjusted with the λ value to be in units of 

deployment time.  For λ = 10, sometimes the transport cost of the CDKRP is so high 

relative to the improvement in expected deployment time that no relocations are made, 

resulting in the same solution as KPMP.   

 In the following section, the models for λ = 0.1 and 1 are validated against 

existing and static location models using actual fire occurrences in 2006 and 2007.  The λ 

= 10 results are omitted since they are so similar to the static location model results.   

 

4.5.3. Validation of Models with Actual Fires 

To validate the performance of the static location model compared to the dynamic 

relocation model with and without forecasting, actual fire occurrence data from July 
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through August in 2006 and 2007 are used.  The California Fire Alliance (CFA) (2008) 

provides reported fire occurrence data by CDF unit and by magnitude measures such as 

number of GIS acres.  

To compare the performance of the models in with actual fire occurrences, the k 

closest air tankers determined from the models are assigned to each fire occurrence. 

The actual deployment times are summed up and weighted by the distribution of the 

GIS acres for the season to account for the severity of the fires. The total relocation 

costs are divided by the number of fires in that season and added to the acre-weighted 

deployment times to obtain what we call the “Net k-Deployment Time”.  TABLE 4-5 

shows the validation results for 2006 and TABLE 4-6 shows the results for 2007, assuming 

each fire requires all 20 air tankers in the network, weighted by GIS acre percentage. 

The results of the CDKRP for no forecast, 3-Day and 7-Day forecast are compared to the 

KPMP solution and the actual base assignments.    
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TABLE 4-5. Actual Fires and Acre-Weighted Deployment Time from ALL Air tankers, 2006 

     KPMP 
CDKRP, No 

Forecast 

CDKRP, 3-Day 

Forecast 

CDKRP, 7-Day 

Forecast 

Fires: CDF: CDF#: 
GIS 

Acres 
Actual Static λ=0.1 λ=1.0 λ=0.1 λ=1.0 λ=0.1 λ=1.0 

7/3/06 TCU 11 1997 1.031 1.082 1.183 1.172 0.857 0.857 0.691 0.710 

7/4/06 TCU 11 150 0.077 0.081 0.097 0.096 0.067 0.068 0.052 0.053 

7/5/06 BEU 1 17 0.009 0.009 0.010 0.010 0.008 0.008 0.006 0.006 

7/15/06 BEU 1 249 0.127 0.133 0.134 0.140 0.102 0.107 0.094 0.090 

7/15/06 MVU 7 290 0.290 0.246 0.235 0.219 0.297 0.292 0.308 0.308 

7/20/06 MVU 7 317 0.318 0.269 0.253 0.257 0.316 0.316 0.337 0.338 

7/20/06 TUU 12 1360 0.807 0.716 0.713 0.727 0.636 0.636 0.589 0.593 

7/22/06 BEU 1 14509 7.410 7.776 6.946 7.697 5.859 5.948 5.493 5.375 

7/22/06 FKU 3 9435 4.983 4.719 4.083 4.597 3.595 3.527 3.245 3.283 

7/23/06 BEU 1 86 0.044 0.046 0.042 0.043 0.033 0.034 0.032 0.032 

7/23/06 FKU 3 229 0.121 0.115 0.102 0.110 0.085 0.085 0.081 0.080 

7/27/06 TCU 11 200 0.103 0.108 0.096 0.100 0.074 0.073 0.069 0.068 

7/29/06 BEU 1 247 0.126 0.132 0.127 0.120 0.104 0.097 0.095 0.093 

8/1/06 BEU 1 11 0.006 0.006 0.006 0.006 0.005 0.005 0.004 0.004 

8/2/06 TCU 11 87 0.045 0.047 0.043 0.044 0.034 0.033 0.030 0.029 

8/6/06 MVU 7 9 0.009 0.008 0.008 0.008 0.009 0.009 0.010 0.010 

8/8/06 RRU 8 126 0.115 0.098 0.095 0.096 0.110 0.110 0.120 0.120 

8/11/06 MVU 7 43 0.043 0.036 0.041 0.044 0.046 0.047 0.046 0.046 

8/26/06 MVU 7 8 0.008 0.007 0.007 0.007 0.008 0.008 0.008 0.009 

Weighted Avg Deployment Time 

(hrs) 
15.67 15.64 14.22 15.50 12.25 12.26 11.31 11.25 

Average Relocation Costs/Fire 0.0 0.0 0.33 1.29 0.19 0.71 0.09 0.29 

Net k-Deployment Time (k = 20) 15.67 15.64 14.55 16.79 12.44 12.97 11.40 11.54 

% Deployment Time Reduction  0% 0.2% 7.1% -7.1% 20.6% 17.2% 27.2% 26.4% 
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TABLE 4-6. Actual Fires and Acre-Weighted Deployment Time from ALL Air tankers, 2007 

     
KPMP 

CDKRP, No 

Forecast 

CDKRP, 3-Day 

Forecast 

CDKRP, 7-Day 

Forecast 

Fires: CDF: CDF#: 

GIS 

Acres Actual Static λ=0.1 λ=1.0 λ=0.1 λ=1.0 λ=0.1 λ=1.0 

7/1/07 MVU 7 95 0.396 0.335 0.328 0.335 0.406 0.412 0.409 0.411 

7/1/07 BEU 1 49 0.104 0.109 0.101 0.100 0.077 0.074 0.076 0.074 

7/2/07 TCU 11 101 0.217 0.228 0.210 0.220 0.149 0.149 0.146 0.143 

7/6/07 MVU 7 136 0.567 0.480 0.465 0.462 0.573 0.584 0.593 0.553 

7/29/07 RRU 8 224 0.850 0.728 0.654 0.653 0.823 0.823 0.870 0.856 

8/1/07 SLU 10 29 0.070 0.068 0.064 0.064 0.056 0.056 0.056 0.056 

8/10/07 FKU 3 5671 12.462 11.803 10.590 10.244 7.987 8.188 7.914 7.818 

8/18/07 FKU 3 92 0.202 0.191 0.175 0.163 0.130 0.131 0.130 0.131 

8/19/07 SLU 10 17 0.041 0.040 0.039 0.039 0.032 0.032 0.031 0.031 

8/23/07 SLU 10 13 0.031 0.030 0.028 0.027 0.026 0.025 0.025 0.025 

8/24/07 BEU 1 19 0.040 0.042 0.040 0.038 0.030 0.030 0.030 0.029 

8/28/07 FKU 3 151 0.332 0.314 0.283 0.281 0.214 0.222 0.216 0.217 

8/30/07 SLU 10 20 0.048 0.047 0.053 0.053 0.041 0.041 0.040 0.040 

8/30/07 BEU 1 422 0.897 0.941 0.860 0.851 0.677 0.689 0.646 0.667 

8/30/07 BEU 1 19 0.040 0.042 0.039 0.038 0.030 0.031 0.029 0.030 

Weighted Avg Deployment Time 

(hrs) 
16.30 15.40 13.93 13.57 11.25 11.49 11.21 11.08 

Average Relocation Costs/Fire 0.0 0.0 0.53 2.07 0.28 1.13 0.18 0.77 

Net k-Deployment Time (k = 20) 16.30 15.40 14.46 15.64 11.53 12.62 11.39 11.85 

% Deployment Time Reduction  0% 5.5% 11.3% 4.0% 29.3% 22.6% 30.1% 27.3% 

 

 

TABLE 4-5 and TABLE 4-6 show the computations for obtaining the acre-weighted air 

tanker-deployment times plus the average relocation costs (Net 20-Deployment Time).  

However, that’s assuming that an average actual fire outbreak requires 20 air tankers to 

be deployed.  Since that is not actually known, a sensitivity analysis is conducted using 

the same calculations for every other number of air tankers.  The results of the 

validation for every k value (this implies that the k-closest air tankers out of the 20 are 
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assigned) for both 2006 and 2007 are shown in FIGURE 4-3 and FIGURE 4-4, 

respectively. 

 FIGURE 4-3 indicates that if the average actual wildland fire outbreak requires 

only a few air tankers, then static location model and actual locations are sufficient.  

This makes intuitive sense because relocation costs would overwhelm the relocation 

models – particularly for this extreme case.  Note that the static model is approximately 

the same as the actual locations, and is slightly worse for most cases shown for the 

range of 1 – 20 air tankers.  

As fires become more severe and require on average more than 7 air tankers, 

the relocation models with forecasting begin to dominate in performance.  The benefit 

of having forecasting is clear in this figure as well – the relocation model without 

forecasting has no foresight and is much less cost effective.  In fact, when λ exceeds a 

certain point it actually becomes less cost-effective than the static model using seasonal 

average fire weather data and actual locations for all severity scenarios. 

The difference between the No Forecast relocation model and the 3-day or 7-day 

forecast models is the value of incorporating hysteresis in the relocation.   

The figure also shows that generally the 7-day forecasts perform best in the mid- 

to high- severity ranges of fire outbreaks requiring many air tankers. 
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FIGURE 4-3. 2006 Sensitivity Analysis of Acre-Weighted Deployment Air Tanker-Hours versus 

Average Number of Air Tankers Needed for Actual Fires 

 

The 2007 data shown in FIGURE 4-4 looks a little different (there’s a sharper divergence 

between models).  Again, the no forecast relocation model can be less cost-effective 

than static model.  The relocation models with forecasting surpass the static models for 

actual fires requiring on average 7 or more air tankers. 

The 2006 and 2007 data shows that relocation models using fire weather data 

without any foresight can result in poor performance regardless of the k value for actual 

fires.  On the other hand, including a forecast horizon in the model can potentially 

reduce deployment times of required air tankers by 20 – 30% for the most severe 

wildland fire scenarios, and be approximately equivalent or slightly worse for seasons 

with small wildland fire outbreaks.  As average fires become more severe in the future in 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 1011121314151617181920

N
e

t 
k

-D
e

p
lo

y
m

e
n

t 
T

im
e

 (
a

ir
 t

a
n

k
e

r-
h

rs
)

Avg # of Airtankers Needed for Actual Fires (k)

No Forecast, lambda=0.1

No Forecast, Lambda=1

3-day Forecast, 

Lambda=0.1

3-day Forecast, 

Lambda=1

7-day Forecast, 

Lambda=0.1

7-day Forecast, 

Lambda=1

Static

Actual Locations



www.manaraa.com

123 

 

the face of global warming and worsening environmental conditions, these types of 

models will be necessary to reduce the risk of loss from major fire outbreaks. 

 

 

FIGURE 4-4. 2007 Sensitivity Analysis of Acre-Weighted Deployment Air Tanker-Hours versus 

Average Number of Air Tankers Needed for Actual Fires 

 

Two issues should be kept in mind with the actual fire occurrence performance 

measures; the first is the accuracy of the BI as a fire prediction index.  The dynamic 

relocations are based on the assumption that the BI strongly correlates to the 

occurrence of a magnitude-weighted fire occurrence.  If that is not the case, the 

dynamic models may perform even better using a more accurate fire weather index.  

The second issue is the use of select weather stations as “representative” stations for 
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each CDF unit.  A more robust model in the future should include data from multiple 

weather stations in each unit. 

Note that the proposed models do not explicitly consider the possibility that a 

server will be simultaneously deployed to two nodes.  The topology of the example 

network (sparse) makes such an assignment relatively unlikely. However if there was a 

need to extend this to an urban problem or even one in which simultaneous and 

proximate fires might occur then similar results can be obtained by increasing the 

demand parameters used in the model to account for a chance of being busy.   

The main conclusion would remain – when fires are less severe a static model 

outperforms a dynamic one (the basing decisions should be very effective).  However 

when fires are more severe, and therefore relocations will help agencies respond with a 

large number of servers quickly, dynamic basing (taking into account fire weather data) 

outperforms static basing.  In the state of California, fires are increasing in size and 

intensity – these claim more lives and acres each year.  Therefore, new methods to most 

effectively use resources are essential. 

 

 

4.6 DISCUSSION 

 

The proposed models present possible new statewide regional strategies for the ever-

growing problem of wildland fire planning by integrating data from ever-improving fire 

weather indices and facility location models.  Earlier work in identifying fire weather 
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indices as Markov processes was extended to show how fire weather data could be 

modeled as mean-reverting stochastic processes. Two multiple-server models were 

developed to meet the needs of the unique conditions of wildland fire planning: large-

magnitude fires requiring regional coordination in initial attack from air bases with 

multiple air tankers.  The results show promise for dynamic relocation models with 

forecasting and argue against the use of static (seasonal) location models for regions 

with typically severe wildland fire outbreaks.  For any setting, dynamic relocation 

without forecasting can be less cost-effective than the static model. 

The results here reveal new insights for state agencies; in the face of global 

warming and ever-more severe wildland fires, it is crucial to identify the threshold k 

value for which it would be more cost-effective to adopt a centralized dynamic 

relocation model using fire weather data and forecast horizons. 

The results can also be generalized for resource allocation in a network.  

Incorporating the parameters of the stochastic process as chance constraints adds value 

of flexibility to an existing position or solution.  This concept can have tremendous 

benefit in humanitarian logistics problems involving large scale consequences where 

pre-positioning with adaptive intelligence can save decision-makers the cost of 

unnecessary switches.   
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“Each problem that I solved became a rule which served afterwards to solve other 

problems.” – Rene Descartes 

 

CHAPTER 5 FASTER CONVERGING HEURISTICS FOR 

CONTINUOUS NETWORK DESIGN-BASED MODELS 

 

 

As discussed in Chapter 2, the state of the art in network design models has broadened 

significantly in scope and applicability to meet the needs of increasingly complex 

transportation network management problems.  Whereas early development in 

network design models focused primarily on solution algorithms, the current breadth of 

developments cover a wide range from different network design problem formulations 

such as capacity expansions (Yang Bell, 1998), network toll pricing (Yang and Bell, 1997), 

or signal timing (Ceylan and Bell, 2004), to different objectives such as reliability (Chen 

et al, 2002), social and spatial equity (Yang and Zhang, 2002),  incorporating flexibility 

with deferral options as discussed in Chapter 3, and complex solution algorithms such as 
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stochastic programming (Chen and Yang, 2004) and robust optimization 

(Karoonsoontawong and Waller, 2007), to name a few. 

 While some of the models feature multi-objective or mixed integer formulations, 

the network models mentioned above share an underlying bi-level optimization 

program with continuous decision variables representing a managing agent’s decision-

making at the upper level and the response of individual users at the lower level.  As 

pointed out by Yang and Bell (1998), continuous network design problems (CNDP) are 

non-convex and non-differentiable, so solutions require approximate heuristics, such as 

sensitivity analysis based (SAB) algorithms (Yang and Bell, 1998, Yang and Bell, 1997), 

other derivative-based methods (Gao et al, 2007), simulated annealing (Friesz et al, 

1992) or genetic algorithms (GA) (Chen and Yang, 2004). 

 GA methods are popular with researchers because of their versatility in handling 

a vast array of different non-convex functions without the need to differentiate the 

functions, for both continuous and discrete decision variables.  GA methods are 

evolutionary methods that rely on stochastic convergence of the optimum over many 

iterations.  Since each iteration of GA involves evaluation of a lower level network 

equilibrium, this method can have very slow convergence rates for large scale networks.  

This limitation makes it difficult to apply many of these network design models to 

practice, especially for more complex hierarchical models such as multi-objective 

network design problems or the network-based real option models in Chapter 3. 

 This chapter is divided into two main parts.  The first (Sections 5.1 – 5.3) 

considers the multi-start MSRBF algorithm developed by Regis and Shoemaker (2007) as 
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a faster alternative to other global heuristics for solving continuous network design 

problems.  The second (Sections 5.4 – 5.5) proposes a multi-objective solution algorithm 

based on the MSRBF algorithm, which is then applied to the robust toll pricing problem 

in Chapter 6.   

 

 

5.1 BACKGROUND 

 

An alternative method is considered and proposed as a faster global heuristic for the 

CNDP.  This method is based on the Metric Stochastic Response Surface (MSRS) method 

developed by Regis and Shoemaker (2007).  MSRS is a global stochastic optimization 

approach that can use radial basis functions (RBF’s) to intelligently guess the next point 

to evaluate using interpolation (MSRBF).  The multi-start local MSRBF algorithm is 

shown to work extremely well for continuous, high-dimensional, multimodal, 

computationally expensive functions with box constraints.  Most importantly, it has 

been shown to converge faster than other non-derivative based heuristics such as GA 

and SA, for functions with up to 14 dimensional variables.   

 The introduction and evolution of the method is described next, followed by a 

proposed design of the algorithm for the CNDP.  A numerical test is performed to 

compare the convergence rate in terms of the number of user equilibrium (UE) 

evaluations of the proposed method with a genetic algorithm based on the parameters 

set in Chen and Yang (2004).  This comparison is conducted for the classical Sioux Falls 
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South Dakota network for both the given origin-destination (OD) flow volumes and 

more congested conditions.  Lastly, the algorithm is applied to the larger Anaheim 

California network to illustrate its performance there.  This would be the first test of the 

multi-start MSRBF algorithm on a 31-dimensional network design problem.  While this 

research is applied specifically to the CNDP, it should be applicable to other network 

models such as the network toll pricing problem, as long as the decision variables are 

continuous variables. 

 

5.1.1. Artificial Neural Networks 

Artificial neural network algorithms have been explored as a way of avoiding 

computationally expensive functions by using pattern recognition.  As described by 

Haykin (1994), neural networks are essentially nonlinear data modeling tools that utilize 

multiple layers of linear vectors that take input vectors and convert them to output 

vectors.  By designing the number of layers (intermediate layers not directly interacting 

with the final input or output vectors are called hidden layers), the input-output 

mechanism, and the size of the transformation vectors, a “neural network” that is 

analogous to the pattern recognition abilities of the human brain can be replicated.   

Xiong and Schneider (1992) used a GA with a neural network to solve a discrete 

network design problem.  The neural network algorithm is trained to obtain user 

equilibrium total system travel times based on different discrete link investment 

allocations using a subset of discrete allocation solutions obtained from the iterative 

Frank-Wolfe algorithm.  The trained neural network is then able to approximate 
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solutions from new inputs much faster than the Frank-Wolfe algorithm.  For a 

consideration of 20 investment projects, the authors showed that a 100-solution 

training set was sufficient for good approximation. 

 Wei and Schonfeld (1993) used neural networks directly to obtain estimates of 

total travel times for discrete network design problems with project staging.  As a more 

complex problem with an additional time dimension, it turns out the algorithm is fairly 

computationally expensive even for 3 projects with 27 units in the single hidden layer. 

 

5.1.2. Radial Basis Functions 

One type of an artificial neural network used to solve a curve-fitting problem in high-

dimensional space is the RBF’s (Haykin, 1994).  RBF’s are interpolation functions 

composed of a linear combination of independent functions.  Given a set of 

predetermined points in a global search, the values can be used to estimate a set of 

independent spanning basis functions.  These RBF’s can then be used to evaluate 

candidate points with minimal computational cost relative to that of evaluating the 

objective function.   

 These response surface optimization methods using RBF’s have been developed 

by Gutmann (2001), with Matlab implementation by Björkman and Holmström (2000).  

The interpolating RBF’s described by Gutmann take the form of Eq. (5.1). 

 

 (�) = ∑ Ì��(‖� − ��‖)¥�×2 + M(�), � ∈ ℝ�       (5.1) 
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Where p(x) is a polynomial of degree m, and φ is suggested to be one of the following: 

linear, cubic, thin plate spline, multiquadrics, or Gaussian.  However, results by Gutmann 

have shown that the multiquadrics and Gaussian functional forms do not perform as 

well as cubic or thin plate spline. 

 Regis and Shoemaker (2005) extended the method to handle constrained global 

optimization problems and later refined their method into two stochastic search 

algorithms: a global MSRBF method that alternates between varying degrees of global 

and local search, and a multi-start local MSRBF that searches the neighborhood of the 

best found solution (Regis and Shoemaker, 2007).  They show that their MSRBF methods 

converge stochastically and that they can converge faster than some traditional 

methods such as simulated annealing and genetic algorithm for constrained problems, 

depending on the dimension of the problem.  Their conclusion is that the multi-start 

local MSRBF performs much better than the global MSRBF for higher dimensional 

problems, which they tested with 14-dimensional functions. 

 In the following section, both the global MSRBF and multi-start local MSRBF 

methods are customized for the CNDP so that they can be generally applied to any 

network design problem with continuous decision variables. 
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5.2 MSRBF ALGORITHM FOR CNDP 

 

5.2.1. Continuous Network Design Problem 

The CNDP as described in Section 3.1.1.4 is generally defined as an allocation of a fixed 

budget to improve some continuous elements of existing links such that the overall cost 

flows are minimized, subject to selfish user route choice behavior and link congestion.  

The model formulation is shown in Eq. (3.3) – (3.9). 

 

5.2.2. Multi-start Local MSRBF Algorithm for CNDP (RBFCNDL) 

The algorithm presented here is based on the multi-start local MSRBF framework from 

Regis and Shoemaker (2007) and customized for the CNDP, an RBF based continuous 

network design algorithm (RBFCNDL).  Steps 0 – 11 with accompanying descriptions are 

presented below with the highlights shown in FIGURE 5-1.  Since the global MSRBF 

method (which will be labeled RBFCNDG) is similar except for a few key steps, 

comments are included in those sections to denote the differences where applicable. 

 

Step 0. For RBFCNDL, Steps 1 - 11 will keep repeating until n = Nmax; until then the 

algorithm would reset with a new initial design if ρ = ρmax, where ρ ≡ 0 at start and 

increment up when ζ = ζmax.   

 

a. ζ ≡ 0 at start and increments up when no improvement is made on the best solumon 

found in an iteration.   
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b. For the CNDP an ζmax = max(5,  κ) and ρmax = 5 are used.   

 

Step 1. Generate an initial set of points, 8Î2, … , Î¥�: using Latin hypercube sampling 

(LHS).   

 

a. n0 is set to 2κ, where κ is the size of &̅. 

b. Each Î� = gÎ�,2, … , Î�,�j is a κ-dimensional vector with values between 0 and ymax.   

c. Let n’ = n0.  This counter keeps track of the individual local search as opposed to n, 

which is the overall number of iterations.  For RBFCNDG, n’ = n. 

 

LHS is a stratified random sampling technique that breaks down the sampling 

distribution into multiple regions to ensure full coverage of the range of the distribution 

in the most efficient manner.  This sampling method is suggested by Regis and 

Shoemaker (2007) and has been used by Chen and Yang (2004) in simulating initial 

samples for their GA because it outperforms the Monte Carlo method.  In particular, the 

LHS Matlab utility developed by Budiman (2004) is used for convenience. 

 The initial sample size is chosen to be 2κ so that the initial link allocations are 

stratified between the upper and lower halves of the 0 to 1 range.  To deal with the 

constraints of the CNDP, the following step is employed. 
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Step 2. Scale the values up to the budget constraint.  Although the MSRBF algorithm is 

designed to handle box constraints, it can also handle any functional constraints such as 

Eq. (3.4) as discussed in Regis and Shoemaker (2007).   

 

a. Determine the linear combination ∑ Î�,�Ë ,���×2  where each da corresponds to the 

appropriate link cost construction coefficient.  If this falls within the budget B, then 

let �� = Î� . 

b. Otherwise, let �� = a∑ Î�,�Ë ,���×2 bÎ�/ . 

 

This method generates random solutions along or within the constraint for evaluation.  

 

Step 3. For each iteration 1 ≤ � ≤ N′, obtain the user equilibrium link flows ��  from Eq. 

(3.6) – (3.9) with the �� using the Frank-Wolfe algorithm. 

 

Step 4. Evaluate the total system travel times (TSTT) of each yi in the set Sn’ by 

computing the upper level objective function value, è'èè� = ∑ *�a��,�, ��,�b��,��∈p . 

 

a. The best solution found is stored as �¥∗ with a best objective value of è'èè¥∗. 

RBF’s can now be generated based on the initial set of inputs yi,a’s and outputs TSTTi’s.   
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Step 5. For RBFCNDL, let Ω ≡ 0.95, so that fitness of candidate points are always 

weighted 95% by the objective value and 5% by the distance criteria. 

 

a. RBFCNDG: Initiate a cycle path Ω for the purpose of alternating between a purely 

global search (Ω = 0) to a purely local search (Ω = 1).  For the CNDP, the following 

path was used: Ω = {0.05, 0.75, 0.95, 0.97, 1}.   

i. Set a counter � = 1 such that  Ω(�) = 0.05. 

 

Step 6. Estimate the coefficients of Eq. (5.2) using Eq. (5.3) for the n’-sample set.  The p 

in Eq. (5.2) is a combination of polynomials of order m.   

 

 (�) = ∑ Ì�(��4§�ü��)¥′�×2 + M(�), � ∈ ℝ� , �� = ‖� − ��‖       (5.2) 

 

The coefficients can be obtained by solving the system of equations in Eq. (5.3): 

 

dÌWe = d Φ PP- 0eX2 d�0e         (5.3)  

 

Where  

Φ�� is ��	4§�ü��	, where ��	 = ��	 − ��� for 1 ≤ �, % ≤ N; 

P is an n x (κ + 1) matrix for 1st order polynomials where the first κ column  

elements are yi,j, j = 1 to κ, and the last column is 1 

F is the vector of TSTTi’s. 
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Polynomials with order m = 1 are considered for evaluation because tests with higher 

order m = 2 shows worse results.  Based on the framework by Regis and Shoemaker 

(2007), a well performing function is the thin plate spline function �(�) = �4§�ü� used 

in Eq. (5.2).   

 

Step 7. Randomly generate T candidate points, zj, 1 ≤ % ≤ è.  For RBFCNDL, random 

points are generated around the neighborhood of �¥∗ using a vector of independent 

inverse normal distributions with mean value at �¥∗ = 8�¥,2∗ , … , �¥,�∗ : and standard 

deviation ¢ = 8¢2, … , ¢�:.  An initial value of ¢ = 0.1�
�3 is used. 

a. The number of candidate points T = 100κ is considered (for a network with 10 

possible link expansion allocations, T = 1000).  For each zj, 

µ	 = max (minaµ	 , �
�3b , 0) to ensure feasibility; if the constraint is exceeded then 

unilaterally scale all the elements down to the constraint. 

b. For RBFCNDG, simple uniform random sampling is used for the purpose of exploring 

the possible points in the space.   

 

Step 8. For each candidate point zj for 1 ≤ % ≤ è, evaluate sn’(zj).  Additionally, evaluate 

a distance measure as defined in Eq (5.4).  Store the maximum and minimum sn’(zj) and 

∆n’(zj) values. 
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∆¥′aµ	b = arg min2	�	¥′�µ	 − ���         (5.4) 

 

Step 9. Evaluate the fitness criteria of each candidate point to be the next point using 

Eq. (5.5) such that the minimum is preferred. 

 

=¥′aµ	b = Ω(�) �`′a³²bX�`′,
Ò`�`′,
�ÐX�`′,
Ò` + a1 − Ω(�)b ∆`′,
�ÐX∆`′(³²)
∆`′,
�ÐX∆`′,
Ò`     (5.5)  

 

In this evaluation, the first term corresponds to the minimum interpolated TSTT using 

the RBF’s and reinforces the local optimization.  The second term represents the 

distance of each candidate point to the nearest point in the set Sn’, which reinforces the 

exploratory aspect of the global optimization. 

 

Step 10. Let yn’+1 = zj, and evaluate TSTTn’+1 using Eq. (3.6) – (3.9) and (3.3). 

a. Let '¥′Z2 = 8'¥′, �¥′Z2: 

b. If è'èè¥′Z2 ≥ è'èè¥∗ then no improvement has been made in that iteration.  Let 

� = � + 1; else if improvement has been made set � = 0. 

c. If � = �
�3, then let ¢ = ¢/2 and f = f + 1.  This assures convergence of the 

neighborhood search.   

 

Step 11. Set n = n + 1.  If n = Nmax, stop. Else, if f = f
�3, go to Step 1.  Else if f < f
�3, 

set N′ = N′ + 1 and go to Step 6.   

a. For RBFCNDG, let δ = 5mod(δ + 1).  
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At the end of the algorithm, the minimum è'èè�
�Ð∗ obtained is the solution with the 

corresponding ��
�Ð∗ .  If the è'èè�∗’s from the RBFCNDL are plotted by iteration, the 

result would be cycles of converging values that lead to restarts.  For the RBFCNDG, the 

result would be cycles of highs and lows because of the alternating between global and 

local search.  The highlights of the RBFCNDL algorithm are shown in FIGURE 5-1. 

In terms of computational efficiency, both the RBFCNDL and RBFCNDG require 

up to Nmax evaluations of Eq. (3.6) – (3.9) and T(Nmax – n0) evaluations of the 

computationally cheaper candidate point interpolations and evaluations.  Estimating the 

parameters of the interpolation function in each iteration is considered computationally 

cheap compared to the network optimization.  A sample 1000-iteration run of the Sioux 

Falls network with 24 nodes, 10 investment links, 76 overall links showed that 95% of 

the computational time is allocated to the network optimization.  Details of run time 

results are shown in the numerical tests in the next section.      
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FIGURE 5-1. RBFCNDL for CNDP: A) Steps 1-2, B) Steps 3-6, C) Steps 7-9, D) Steps 5, 10, 11. 

 

 

5.3 NUMERICAL TEST OF RBFCNDL 

 

The RBFCNDL and RBFCNDG algorithms are compared to the GA approach used in Chen 

and Yang (2004).  Further, for benchmarking we also compare these to the local 

heuristic Iterative Optimization Algorithm (IOA) as described by Yang and Bell (1998). 

While that algorithm works exceptionally well for the problem we examine for 

illustrative purposes, we do not believe it will be possible to apply to more complex and 

larger problems and it has the potential to get stuck in local optima. 

 

FIGURE 1 RBFCNDL for CNDP: A) Steps 1-2, B) Steps 3-6, C) Steps 7-9, D) Steps 5, 10, 11. 
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The Sioux Falls, SD network with 24 nodes and 76 links (Chen and Yang, 2004) is 

used.  The network data and parameters are presented in Appendix D.  Five runs of each 

algorithm are made for comparison.  In addition to the Sioux Falls network with 

standard OD flows, a more congested scenario with double the OD flows is tested to 

compare performance of the algorithms. 

The Anaheim, CA network with 38 centroids, 416 nodes and 914 links 

(Jayakrishnan et al, 1994) is used to illustrate the scalability of the RBF methods 

compared to GA.  For that network, 31 links are chosen as potential candidates for 

capacity expansion, making it a 31-dimensional network design problem. 

 

5.3.1. Sioux Falls Network 

The network parameters are based on the parameters referred to in Chen and Yang 

(2004).  Ten links are considered for capacity expansion given a budget of 5500 units 

(equivalent of $5.5M). 

 The Iterative Optimization Algorithm (IOA) discussed in Section 3.2.1.5 involves 

iteratively fixing the upper and lower levels of the bi-level problem and solving one 

constrained optimization problem in each iteration.  For the Sioux Falls network, the 

budget constraint is a quadratic constraint so the “fmincon” function in Matlab is used 

to solve the upper level for convenience.  While IOA is an extremely fast heuristic, the 

solution is a Cournot-Nash equilibrium as opposed to being a more realistic Stackelberg 

equilibrium with leader-follower underlying behavior.  The implication of this difference 

is that the solution assumes that the drivers on the road do not have perfect knowledge 
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of where the agency is making the link improvements.  The IOA approach is used with a 

tolerance of relative difference in the TSTT of 0.01 and Frank-Wolfe iterations up to 100 

iterations.  The converged TSTT after 3 iterations with a relative tolerance of 0.001 is 

75.93, compared to a no investment TSTT of 101.20. 

 After running 5 sample runs of 1000 iterations of UE assignment for RBFCNDL, 

RBFCNDG, and GA (992 UE evaluations based on 30 generations with an initial 64 

population sample and subsequent 32 evaluations per generation), the convergence 

rates of the 5 sample runs for each algorithm are plotted in FIGURE 5-2.  The minimum, 

average, and maximum of the five runs for each are summarized in TABLE 5-1, as well as 

their average run times.  The algorithms were run in Matlab 7.7.0 (R2008b) on a 

Windows XP Professional 2002 SP3, Intel Core2 Quad CPU with Q6600 @2.40GHz and 

2GB RAM. 

 

TABLE 5-1. Optimal Value Comparison from 5 sample runs for RBFCNDL, RBFCNDG, and GA 

Obj (1000 iter) IOA (benchmark) RBFCNDL RBFCNDG GA (992 iter) 

Min TSTT* 75.93 75.53 75.61 75.78 

Avg TSTT* 75.93 75.53 75.64 76.01 

Max TSTT* 75.93 75.54 75.67 76.85 

Total Run Time (min) -- 41 105 33 
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FIGURE 5-2. Convergence rates of optimal solution for standard Sioux Falls OD flows. 

 

 

The figure shows the optimal values as functions of the number of iterations for the 

three methods being compared, with both RBF algorithms significantly outperforming 

the GA in convergence rate for all five runs.  As mentioned above, the IOA result is 

included for benchmark comparison.  All three algorithms obtain better results than the 

IOA heuristic within 1000 iterations (within 100 iterations for the RBF algorithms and 

within 800 iterations for GA).   

 The results show that the RBFCNDL algorithm converges extremely fast in terms 

of both the number of UE evaluations (within 100 iterations) and in the run time.  The 
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run time of the RBFCNDG algorithm is greater than twice that of the RBFCNDL because 

the sample set is never reset so the matrix used for estimating the interpolation 

coefficients increases in size with the number of iterations.  This design prevents the 

RBFCNDG from being a suitable algorithm for large-scale problems.  This conclusion 

verifies the conclusion made in Regis and Shoemaker (2007) for the problems they 

tested on. 

 The total run time of the RBFCNDL is greater than the GA because of additional 

computational time for interpolation and generating candidate points.  However, the 

algorithm appears to reach convergence within 200 iterations, or less than 1/5 of the 

total run time.  That means the RBFCNDL converges in less than 8 minutes compared to 

the GA, which does not reach the same converged values in 33 minutes.   

 The RBFCNDL and GA algorithms are also allowed to run to 8000 iterations and 

249 generations (64 initial population with 248 generations of 32 evaluations each 

resulting in the same 8000 iterations of UE evaluation).  The results are compared in 

TABLE 5-2.  The best solution obtained by the RBFCNDL from one run up to 8000 

iterations is 75.53, reached on the 194th iteration.  The run time for the 8000 iterations 

of RBFCNDL is 325 minutes, although the optimal solution is found after approximately 8 

minutes.   

  

TABLE 5-2. Optimal Value Comparison from 8000 Iteration/249 Generation Run 

 RBFCNDL (8000 Iterations) GA (249 Generations) 

TSTT* 75.53 veh-hr 75.67 veh-hr 

Total Run Time 325 min 265 min 

N* 194 iter. 7696 iter. 

Run Time to N* 8 min 255 min 
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5.3.2. Sioux Falls with 2x OD Flows 

In this more congested scenario, OD demand from the standard Sioux Falls network is 

multiplied by two.  The IOA approach converges after 3 iterations (with a 0.001 relative 

tolerance) resulting in a TSTT = 1154.4.  This value is in comparison to a no investment 

user equilibrium of TSTT = 1963.5. 

 The optimal solutions from running five samples of 1000 iterations of UE 

assignment for RBFCNDL, RBFCNDG, and GA are shown in TABLE 5-3.   With more 

congestion, only the RBFCNDL reaches the IOA solution within 1000 UE iterations.  The 

run times do not change by much under the more congested conditions.  The 

convergence rates of these three methods are shown side by side in FIGURE 5-3.  The 

solutions in TABLE 5-3 for GA are non-converged, whereas the RBFCNDL results are 

generally converged by the 200th iteration, as shown in FIGURE 5-3. 

 

TABLE 5-3. Optimal Value Comparison from 5 sample runs, 2x OD Flow 

Obj (1000 iter) IOA (benchmark) RBFCNDL RBFCNDG GA (992 iter) 

Min TSTT* 1154.4 1154.2 1156.9 1157.9 

Avg TSTT* 1154.4 1154.4 1157.6 1160.1 

Max TSTT* 1154.4 1154.4 1158.6 1162.5 

Total Run Time (min) -- 42 107 34 
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FIGURE 5-3. Convergence rates of optimal solution for Sioux Falls 2x OD flows. 

 

5.3.3. Anaheim, CA Network 

A larger network is used to illustrate the scalability of the algorithms.  The Anaheim 

network data from 1992 is obtained from the Bar Gera website (2007), which was used 

by Jayakrishnan et al (1994).  A map of the network is shown in FIGURE 5-4.  In addition 

to the 416 nodes and 914 links, only 38 of the nodes are OD centroids that serve as 

sources and sinks for demand.  OD flow is not allowed to use centroids as through nodes 

in order to prevent going onto the artificially constructed centroid connectors.  With the 

same tolerance of 0.01 and 100 max iterations, the UE assignment with Frank-Wolfe 

results in an objective value of 21,433.9 veh-hr and a TSTT of 23,665.9 veh-hr. 
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FIGURE 5-4. Anaheim network 

 

Additional parameters were determined for this experiment with the CNDP since no 

such parameters are included in the data set.  Similar to the Sioux Falls network, a 

subset of links are chosen as candidates for capa

of 31 links chosen based on a criterion of selecting link candidates that are more than 1 
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subset of links are chosen as candidates for capacity expansion.  TABLE 5

of 31 links chosen based on a criterion of selecting link candidates that are more than 1 

capacity of 1800 veh/hr/lane (vphpl), a maximum of 7 lanes or 12,600 

vph was assumed possible for each link.  The ymax were determined by subtracting the 

existing capacity for each of the 31 links from the maximum 12,600 vph

construction cost coefficients, da, were determined based on the ymax

ymax = 5400, and da = 4 if ymax = 7200.  After computing the 

Additional parameters were determined for this experiment with the CNDP since no 

such parameters are included in the data set.  Similar to the Sioux Falls network, a 

5-4 shows the set 

of 31 links chosen based on a criterion of selecting link candidates that are more than 1 

capacity of 1800 veh/hr/lane (vphpl), a maximum of 7 lanes or 12,600 

were determined by subtracting the 

existing capacity for each of the 31 links from the maximum 12,600 vph.  The 

max values: da = 2 if 

= 7200.  After computing the 
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minimum budget needed to build any one of the links to 7 lane capacity, that value 

28,800 was doubled and rounded up to an eventual budget of B = 60,000.   

 Using these parameters, the IOA solution after 5 iterations is TSTT = 23,559.9 

veh-hr, which has a savings of 106.1 veh-hrs. 

 The RBFCNDL and RBFCNDG algorithms are tested up to 1000 iterations while 

the GA algorithm is run up to 30 generations (64 initial population + 32 evaluations * 29 

subsequent generations = 992 UE evaluations).      

The convergence rates of each of the sample runs are compared in FIGURE 5-5.  

Since the results of the two sample runs clearly show the gap in performance between 

the RBFCNDL and the GA within the 1000 iterations, no further sample runs or further 

iterations are necessary.  The RBFCNDL run time increases from approximately 40 

minutes for the Sioux Falls network with 24 nodes and 10 investment links to 

approximately 2400 minutes for the Anaheim network with 416 nodes and 31 

investment links.   

The best results from two sample runs of each method are presented in TABLE 

5-4 along with the IOA values.  The best sample run from RBFCNDL has a TSTT of 

23,555.6 veh-hr after the 1000 iterations while the RBFCNDG has a TSTT of 23,603.7 

veh-hr.  In comparison, the GA algorithm converges to an optimal TSTT = 23,578.2 veh-

hr after the 30 generations.   Only the RBFCNDL algorithm achieves a better TSTT than 

the IOA within 1000 UE iterations, obtaining its best solution on the 298th iteration, 

which takes approximately 718 minutes compared to the 2062 minutes needed by GA 

for its 30-generation optimal solution.  Let’s refer to the iteration upon which the best 
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solution is obtained as N*. This test demonstrates both the weakness of the RBFCNDG 

algorithm for 31-dimensional problems and the strength of the RBFCNDL algorithm 

under the larger-scale setting. 

 

 

FIGURE 5-5. Convergence rates of optimal solution for Anaheim, CA network. 

  

23550

23570

23590

23610

23630

23650

23670

0 200 400 600 800 1000

T
o

ta
l S

y
st

e
m

 T
ra

v
e

l 
T

im
e

 (
v

e
h

-h
rs

)

# UE Assignment Iterations

RBFCNDG (1)

RBFCNDG (2)

RBFCNDL (1)

RBFCNDL (2)

GA (1)

GA (2)

IOA



www.manaraa.com

149 

 

 

TABLE 5-4. Anaheim CNDP parameters and solutions 

ID Link # ymax da IOA RBFCNDL RBFCNDG GA 

1 71 7200 4 0 40.6 162.7 616.5 

2 110 5400 3 2608.63 2813.0 603.3 253.3 

3 113 5400 3 3220.91 2956.3 1085.8 3373.3 

4 127 5400 3 2571.77 681.7 1153.8 730.5 

5 130 5400 3 1023.24 77.4 399.4 112.0 

6 150 5400 3 150.29 433.9 81.3 583.0 

7 172 5400 3 372.81 1533.0 654.5 750.7 

8 272 5400 3 3878.55 3407.9 932.7 2102.3 

9 301 5400 3 5400 7170.8 1099.8 3050.7 

10 331 3600 2 43.07 265.1 126.3 813.9 

11 369 3600 2 1117.62 817.1 218.3 828.6 

12 414 7200 4 0 0 36.7 472.0 

13 428 7200 4 0 0 517.3 190.9 

14 436 7200 4 0 0 8.6 327.8 

15 451 7200 4 0 0 223.3 4.0 

16 483 7200 4 0 0 1627.3 125.9 

17 528 7200 4 0 0 426.5 90.4 

18 537 7200 4 0 34.7 831.1 352.8 

19 558 7200 4 0 0 57.3 87.7 

20 567 7200 4 0 23.0 1480.7 529.5 

21 580 7200 4 0 10.7 154.2 449.0 

22 584 7200 4 0 0 320.9 391.1 

23 585 7200 4 0 0.1 88.0 391.2 

24 588 7200 4 0 0 628.8 75.8 

25 636 7200 4 0 0 212.7 11.8 

26 648 7200 4 0 0 373.8 304.5 

27 719 7200 4 0 0 802.3 455.5 

28 749 7200 4 0 0 66.3 266.9 

29 805 7200 4 0 0 391.1 618.2 

30 834 7200 4 0 44.3 1221.9 44.8 

31 891 7200 4 0 0 688.0 22.3 

TSTT* -   23,559.9 23,555.6 23,603.7 23,578.2 

N* 
 

  - 298
th

 iter. 291
st

 iter. 886
th

 iter. 

Budget 
 

  60,000 60,000 60,000 59,467.41 

Total Run Time 
 

  - 2410 min 2538 min 2309 min 

Time to N* 
 

  
 

718 min 739 min 2062 min 
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In terms of scalability, the ratio of total run time for 30 generations of GA on the smaller 

Sioux Falls network compared to 1000 iterations of the RBFCNDL is 0.80.  By 

comparison, the same ratio for the Anaheim network is 0.96.  Clearly, the RBF 

interpolation time becomes negligible relative to the network optimization for large-

scale networks.  For the RBFCNDL, the ratio of “run time to N*” for the Anaheim to 

Sioux Falls network is 718:8.   

By increasing the network size from 24 nodes and 10 expansion dimensions to 

416 nodes and 31 dimensions, the convergence rate of the RBFCNDL increased 90 times.  

For the GA, convergence is not achieved for the Anaheim network, and it could take an 

estimated 18,500 minutes or 13 days to obtain the results for 250 generations on the 

same computing environment.   

This example illustrates the potential of the multi-start local MSRBF algorithm as 

a much faster heuristic for solving network design problems with up to 31-dimensions 

and 416 nodes (RBFCNDL).  More complex problems that are based on continuous 

network design elements, such as toll pricing, multi-objective applications, and real 

option dynamic programming computations for continuous network design investments 

can find potential value from this algorithm, as shown in Chapter 3 and Chapter 6.   
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5.4 MULTI-OBJECTIVE EXTENSION 

 

As described in Chen et al (2006), the GA method used to solve the multi-objective 

problem incorporates a distance criterion for fitness in a population because a Pareto 

set could have multiple non-dominated solutions that cannot be evaluated for fitness 

using single-objective criteria.  According to Fonseca and Fleming (1993), GA’s are ideal 

algorithms for multi-objective optimization because they maintain a population of 

solutions each generation, which works very well for searching for approximate Pareto 

optimal sets.   

 The stochastic response surface (SRS) algorithm from Regis and Shoemaker 

(2007) already incorporates a distance criterion to encourage the search for a global 

solution.  When evaluating all the candidate points using the interpolation function in 

each iteration, the SRS chooses a best fit solution based on a weighted combination of 

the best estimated objective value to a neighborhood search along with the furthest 

candidate point from the evaluated points. The MSRBF algorithm also maintains a set of 

solutions but instead of an evolutionary approach of updating that set, it continually 

adds new candidate points obtained from interpolation of the current set.   

 In the proposed algorithm, the method is altered in several ways.  First, the 

multi-start local MSRBF method is used to construct a set of candidate points by 

simultaneously interpolating all the objectives in the objective vector.   
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 When local convergence is reached in the multi-start local MSRBF, the algorithm 

resets with a new initial sample set.  This approach is modified so that now the reset 

would still occur, but the Pareto set would be kept.   

 Third, the distance criterion from the RBF method for choosing the optimal 

candidate point is modified to obtain the maximin distance from the existing 

approximate Pareto set’s objective vectors instead of from the existing local MSRBF set 

of solutions.    

 Fourth, the choice of the best solution to randomly generate the neighborhood 

of new candidate points is determined by sorting the current Pareto set and finding the 

objective vector that is furthest from the other vectors.  The generalized algorithm is 

outlined here.     

 

5.4.4. Generalized Multi-Objective RBF (MO-RBF) Algorithm 

 

Step 0. Initiate an empty Pareto set Ω5.  Initiate neighborhood search tolerances, rmax 

and ζmax.  Initiate n = 0 and ncycle = 0.    

 

Step 1. Initiate ρM as a vector of standard deviations for a normally distributed random 

search around the neighborhood of a chosen vector.  Generate n0 initial variables using 

Latin hypercube sampling within existing constraints.  Let n = n + n0.  Let ncycle = n0. Set 

an initial counter ζ = 0 and r = 0. 
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Step 2. For each nth sample, obtain the objective value vector and evaluate its non-

dominance criteria relative to the existing Pareto set Ω�X2 and update the Pareto set 

Ω�.   

 

Step 3. Sort Ω� by the first objective to obtain Ω�′  and determine the vector that has the 

greatest distance from its adjacent neighbors.  For the vectors at the ends of the set, use 

the distance from their first and second neighbors instead.  Select the point using the 

criteria in Eq. (5.6).  For |Ω�| < 3, select the first point instead.   

 

maxÒ Δ = arg min�∈Ã�v� Ã(‖�� − ��X2‖ + ‖�� − ��Z2‖)       (5.6) 

 

Alternatively, the Manhattan distance can be used instead of the Euclidean distance to 

emphasize the search around points that are more sensitive to trade-offs between the 

objectives.   

 

Step 4. Fit or update a radial basis function (RBF) with Eq. (5.2) by solving Eq. (5.3) for 

each objective interpolator sk for k objectives in a vector. 

 

Step 5. Generate P candidate points using randomly sampled points distributed 

normally around the chosen point from Step 3 with mean of zero and standard 

deviation of IρM.  Evaluate each candidate point with Eq. (5.2) for each of the k 

objectives.  
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Step 6. Construct a temporary non-dominated set φ� from the candidate points, sort it 

to obtain φ�
′ , and select the point that satisfies Eq. (5.7).  Similar to Step 3, the end 

points would use their two closest neighbors instead, and Manhattan distance can be 

used instead of Euclidean distance.   

 

max�Ò Δ = arg min�∈Ã��� Ã(‖ � −  �X2‖ + ‖ � −  �Z2‖)       (5.7) 

 

Step 7. Update �¥Z2 to be the point that satisfies Eq. (5.7).  Evaluate the objective 

vector given the new point. 

 

Step 8. Update the Pareto set Ω�Z2 and sort it.  Set n = n + 1.  If no improvement to the 

Pareto set is made, set ζ = ζ + 1.  If ζ > ζ max, ρM = ρM/2, ζ = 0 and r = r + 1.  If n = Nmax, end 

the algorithm.  If If r ≤ rmax, go to Step 5, else go to Step 1.  

 

5.4.4.1. Convergence 

The output of this algorithm is the approximate Pareto optimal set of an objective 

vector after Nmax iterations and the set of y’s corresponding to each solution.  The proof 

of probabilistic convergence for a simple objective problem provided by Regis and 

Shoemaker (2007) does not apply to this algorithm because of its multiple objectives.  

However, Schütze et al (2008) proves the following theorem (presented as Theorem 3.2 

in that paper): 
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Theorem 5.1. Given a multi-objective problem F: ℝ# → ℝ�, where F is continuous, and 

let � ⊂ ℝ# be a compact set and à ∈ ℝZ� .  Further let: 

 

∀� ∈ �, ∀� > 0:  Pa∃§ ∈ ℕ: P¦ ∩  �(�) ∩ � ≠ 0b = 1      (5.8) 

 

Then an application of any basic stochastic search algorithm, where the existing Pareto 

set is compared to each new solution and updated, leads to a sequence of archives 

�¥, N ∈ ℕ, such that there exists with probability one an N′ ∈ ℕ such that �¥ is an ϵ-

approximate Pareto set for all N ≥ N′.   
 

Where Pl is the set of all populations up to the lth iteration and Bη(x) is a region of radius 

η centered around a point x. 

 

Proof.  The detailed proof is presented in Schütze et al (2008), and essentially follows 

these logical steps: 1) acknowledging that the neighborhood of an immediately prior 

Pareto set should always be a subset of the neighborhood of the current Pareto set; 2) 

bounding the space of the permissible insertions to the current Pareto set; then 3) 

showing by contradiction that there almost surely exists a finite iteration N′ ∈ ℕ such 

that for all future iterations N ≥ N′ the Ω� is within ϵ distance to the true Pareto optimal 

set. 
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 The MO-RBF algorithm requires the problem to be continuous, the domain to be 

a compact set, and includes the Pareto set update in Step 2.  Therefore the convergence 

theorem applies to the proposed algorithm, which means that it would almost surely 

converge to the true Pareto optimal set as the number of iterations approaches infinity 

for a finite tolerance. 

 

 

5.5 COMPARISON OF MO-RBF FUNCTION EVALUATION CONVERGENCE 

 

Quantitative performance measures for multi-objective algorithms generally need to be 

at least binary in nature, as shown in Zitzler et al (2003).  They define a binary ϵ-

indicator for measuring one approximate Pareto set against another for general 

problems that do not have a known solution.  Deb et al (2002) point out that those 

problems with known solutions can have more precise performance measures to 

evaluate algorithms with.  They compile a number of problems with known solutions to 

test their NSGA-II algorithm against other existing methods.  In particular, there is a 

problem with a Pareto set that is known to be both non-convex and non-uniformly 

distributed, which they call ZDT6.  Its similar properties to Pareto sets for multi-objective 

network design problems make it an appealing test problem to compare the algorithms’ 

effectiveness.  The problem is shown in Eq. (5.9) – (5.11) and depicted in FIGURE 5-6. 
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�2(�) = 1 − exp(−4�2) sin�(6W�2)        (5.9) 

�4(�) = ü(�)  1 − d!i(3)
"(3) e4#         (5.10) 

ü(�) = 1 + 9 ¶a∑ 3Òi�Ò$I b
% ·5.4&

         (5.11) 

 

 

 

FIGURE 5-6. Objective Values as Function of x1. 

 

The problem is to minimize f1 and f2, where � ∈ ℝ25 with box constraints [0,1].  The true 

Pareto optimal set lies along the �2 ∈ ?0,1C, �� = 0 for i = 2, 3, … , 10.  The solutions 

presented in Deb et al (2002) compare two performance measures: a convergence 

criteria and a diversity criteria. The convergence criteria is the average distance 

between each solution and its closest point in the true Pareto optimal set. The diversity 

criterion is the average of the absolute value of the deviations from the mean. The 

values are obtained from 25,000 function evaluations.   
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 It turns out that running MO-RBF on Eq. (5.9) – (5.11) just for one-fourth the 

number of iterations, or 6,250 iterations, already results in a better convergence criteria 

than all the other methods obtained from the full 25,000 iterations.  The parameters are 

set to n0 = 21, ρM0 = 0.1*Ymax,  rmax = 5, and ζmax = 10, and P = 1000.  TABLE 5-5 

summarizes the results from Deb et al with the MO-RBF results from 6,250 and 25,000 

iterations.  The 6,250 iteration approximate set has unique 90 solutions in it, while the 

25,000 iteration set has 181 unique solutions. 

 

TABLE 5-5. Comparison of MO-RBF with other Algorithms for ZDT6 

Algorithm 
Mean 

Convergence 

Variance 

Convergence 

Mean 

Diversity 

Variance 

Diversity 

NSGA-II (real) 0.296564 0.013135 0.668025 0.009923 

NSGA-II (binary) 7.806798 0.001667 0.644477 0.035042 

SPEA 0.221138 0.000449 0.849389 0.002713 

PAES 0.085469 0.006664 1.153052 0.003916 

MO-RBF (6,250 iter) 0.0019 0.000009 1.2047 0.000932 

MO-RBF (25,000 iter) 0.0023 0.000010 1.1022 0.000129 

 

 

The results clearly show that MO-RBF has an order of magnitude better convergence 

than any of the other algorithms presented in Deb et al (2002).  FIGURE 5-7 shows a 

comparison of the converged results with the NSGA-II and SPEA obtained from Deb et 

al. 

Taken in consideration with the results from Section 5.3, these results show that 

the MO-RBF algorithm is a much faster heuristic than GA for complex, large-scale multi-

objective network problems.   

 



www.manaraa.com

159 

 

  

FIGURE 5-7. Comparison of MO-RBF decision space to NSGA-II and SPEA from Deb et al (2002). 

 

 

5.6 DISCUSSION 

 

Some relatively recent developments in constrained global optimization theory using 

radial basis function interpolation are applied to continuous network design-based 

models and extended to handle multi-objective problems.  The continuous network 

design problem is considered because local heuristics are already available with which 

to compare the results.  In addition, it is similar to many other network design problems 

and also serves as a basis for more complex network models, making it an excellent 

candidate for testing and extending the algorithms. 

 In Section 5.1 – 5.3, three experiments were conducted: the Sioux Falls network 

with standard OD flows; the same network with double the OD flows to test 

performance under a more congested scenario; and an experiment with the Anaheim, 

CA network to compare the scalability of their performances for problems with up to 31 
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dimensions.  Parameters for the CNDP were developed for the Anaheim network to 

experiment with.  The multi-start local MSRBF algorithm for CNDP (RBFCNDL) appears to 

converge faster than both the global MSRBF algorithm for CNDP (RBFCNDG) and a 

genetic algorithm in all the sample runs conducted. 

 One advantage that GA has over RBFCNDL is that it can handle both continuous 

and discrete decision variables.  The RBF-based methods only deal with continuous 

decision variables at this point. 

In Section 5.4 – 5.5, an RBF global heuristic is modified and a new multi-objective 

global heuristic, MO-RBF, is proposed as a fast converging heuristic for any multi-

objective problem with computationally expensive objective functions.  The algorithm is 

compared to existing multi-objective algorithms for a simple function with non-convex 

and non-uniformly distributed solutions and shown to outperform in terms of the 

number of objective function evaluations.   

The RBFCNDL algorithm is applied to the NODP model in Chapter 3 to obtain an 

approximate optimal solution for designing a network to maximize real option value.  

The MO-RBF algorithm is used in Chapter 6 to solve the robust toll pricing problem and 

to evaluate the value of flexibility in switching between multiple seasons or regimes of 

link failure likelihood.  
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“Failure comes only when we forget our ideals and objectives and principles.” – 

Jawaharlal Nehru 

 

CHAPTER 6 FLEXIBLE ROBUST TOLL PRICING WITH MULTI-

REGIME NETWORK DEGRADATION 

 

This chapter is a culmination of many of the topics and themes discussed in earlier 

chapters about flexible transportation network management.  Toll pricing is introduced 

as a network control that can manage the robustness of a network under stationary 

stochastic capacity.  Robustness is managed using a Pareto optimal set of toll prices 

reflecting different degrees of expected social welfare and variance in that welfare for 

travelers in the network.  This mean-variance toll pricing model is solved with the MO-

RBF algorithm developed in Chapter 5. 

The state of the network, defined as its regime, is allowed to shift from one 

distribution to another.  An example of this is in blizzard seasons, where the weather 

forecasts may exogenously dictate whether a local region has a low chance of snow 
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(resulting in low probability of link degradation due to snow) or has a blizzard warning 

(leading to a high probability of link degradation and a change in the distribution to 

reflect that).   

The value of flexibility discussed in Chapter 2 is illustrated in a simple switching 

option setting where the Pareto optimal set of toll prices are allowed to adapt to a new 

regime.   If costs were highly asymmetric, then more complex real option solution 

methodologies would be needed.  Since the cost of setting a toll price is assumed 

negligible with respect to the change in social benefit that it can incur, it can be 

evaluated with a simple switching option valuation by taking the maximum of the two 

modes of operation.   

Although applied to robust network toll pricing in an urban setting, the concept 

introduced in Chapter 6 can be applied to any network setting where flexible robustness 

can be achieved by allowing a multi-objective solution sets to adapt to new regimes. 

 

 

6.1 INTRODUCTION 

 

As the preceding chapters have shown, transportation planners and operational 

managers cannot focus solely on improving the efficiency of their networks for 

transporting people and goods; they must also heed other objectives such as minimizing 

environmental impacts or minimizing the sensitivity of system performance to 

uncertainties in supply and demand.  Uncertainties in supply can arise from random 
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incidents, such as an accident, a flood that closes off a roadway or a power failure that 

affects train operations.  Many other causes of uncertainties exist – for example gradual 

road deterioration or unexpected events related to security threats. 

One of the strategies available to network managers for tackling congestion is 

network toll pricing.  By placing a toll on particular links or cordons in a network, it is 

possible to redirect traffic to reduce congestion throughout a network. There have been 

a number of successful implementations of pricing schemes in cities such as Singapore, 

London, and Stockholm (Tsekeris and Voβ, 2008).   

Li et al (2007) propose using toll pricing as a strategy to manage uncertainty in a 

network with stationary stochastic OD demand and link capacity. Their approach is 

based on maximizing travel time reliability in a dynamic user equilibrium setting.  Their 

strategy deals only with a single, static set of uncertainties.  In other words, the 

underlying parameters for the probability distributions of the demand and capacity are 

static even if the network setting is dynamic.  By defining multiple regimes instead, i.e. 

different threat levels in security or fire/hurricane seasons, it is possible to exploit 

information from exogenous sources for a more flexible network that responds to such 

information.   

In the supply chain literature, Snyder et al (2007) describe a multiple regime 

setting for inventory management with risk pooling, where the probability distributions 

for demand can be subject to change in the long term.  However, there has been no 

research examining how to evaluate toll pricing as a strategy to actively manage a 
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network against multiple regime uncertainties. This chapter introduces two key 

contributions:  

 

• Toll pricing is proposed as a strategy for managing uncertainty under multiple 

regimes; because of the negligible costs to set toll prices, it can be shown to be a simple 

switching real option.  Instead of maximizing reliability, the multi-objective robust 

mean-variance formulation for toll pricing is used to offer the network managing agent 

greater control over uncertainty.  An epsilon indicator is used to quantify the difference 

between two Pareto sets to determine the value of flexibility to switch Pareto sets in 

response to changes in the regime.   

• The link capacity degradations are modeled with multivariate Bernoulli 

distributions for occurrences and independent uniform random distributions for the 

magnitude of loss; a simulation method that transforms the distributions into equivalent 

multivariate Normal distributions is shown to model direct correlations between 

multiple links. 

 

A literature review is presented in Section 6.2, which ends with a discussion of flexible 

robust network toll pricing as a real option strategy.  It leads up to the proposed 

simulation model formulation and an application of the MO-RBF solution algorithm from 

Chapter 5 in Section 6.3, followed by a numerical test and results in Section 6.4 where 

the value of multi-regime flexibility is explored empirically.  Future research is discussed 

in Section 6.5. 
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6.2 LITERATURE REVIEW 

 

6.2.1. Network Toll Pricing 

Because of the abundance of literature on toll pricing, it would be out of scope to 

present an exhaustive review here. Recent extensive reviews of network toll and 

congestion pricing can be found in Small and Verhoef (2007) and in Tsekeris and Voβ 

(2009). Instead, relevant research leading up to the development of the proposed 

model is presented here.   

The concept of using marginal cost pricing has been around for many years.  

Selfish driver behavior in congestion under user equilibrium tends to lead to a sub-

optimal total travel cost in a network because drivers ignore the cost of externalities. In 

marginal cost pricing theory, the optimal flow is where the marginal cost and demand 

are equal. This equilibrium point can be reached by artificially placing a cost on a road to 

internalize the externality for the driver. For a detailed theoretical understanding of the 

principle, refer to Yang and Huang (1998).   

 While the theory sounds simple enough to implement, there are many 

complicating issues from both a theoretical and practical standpoint. Some theoretical 

issues have been pointed out in network level toll pricing: queuing, elastic demand, and 

spatial and welfare equity.  Yang and Lam (1996) introduced a bi-level network toll 

problem that explicitly incorporates queuing in the formulation. Three different 

objectives were recommended: minimizing total cost, maximizing revenue, and 
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maximizing the ratio of revenue to cost. Yang and Bell (1997) developed a similar bi-

level toll problem but included elastic demand as well. They noted that the model that 

included both queuing and elastic demand applied to a subset of the links was not 

guaranteed to produce a feasible solution.  In addition, because demand is elastic, cost 

minimization is not a reasonable objective. Instead, the following three objectives were 

proposed: maximizing total realized demand, maximizing consumer surplus, and 

maximizing total revenue. 

Yang and Meng (1998) extended the explicit queue formulation into the space-

time extended network to include departure time in addition to route choice and toll 

pricing.  Subsequent static network models such as Yang and Zhang’s (2002) only 

consider elastic demand without queuing while extending the problem to include 

multiple user classes and spatial equity.  In their case, they use social welfare as the 

maximizing objective value.  Social welfare is defined as the consumer surplus plus the 

profit from the toll pricing. 

The problem discussed in Yang and Bell (1997) about a subset of links hints at a 

bigger practical issue.  Although marginal cost pricing theory is meant to consider every 

link in a network for tolling to achieve the system optimal condition, this “first best” 

approach is not realistic.  It is often more practical to toll only a specific subset of links, 

although this could lead to solutions that do not reach the system optimal value. 

Verhoef (2002) and Shepherd and Sumalee (2004) developed heuristics to 

simultaneously estimate both the optimal locations and the prices for tolls on a subset 

of links using heuristics such as simulated annealing and genetic algorithms. On an 
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operational level however, generally the locations of the tolls are already determined 

and the only problem is to obtain the optimal prices. A bi-level scheme incorporating 

elastic demand such as the one proposed by Yang and Zhang (2002) can solve such a 

problem using a stochastic optimization heuristic such as simulated annealing. 

More recently, Chen et al (2006) proposed a planning level Build-Operate-

Transfer (BOT) network design problem that obtains optimal second-best toll prices and 

capacity improvements while accounting for uncertainty in demand. They showed that a 

robust approach can be achieved for toll pricing using a mean-variance multi-objective 

model that maximizes expected profit or social welfare while minimizing the variance.   

 

6.2.2. Robust Network Design 

Snyder et al (2006) pointed out the importance of accounting for disruptions during the 

design of a supply chain network so that it can perform well even after a disruption.  

Whereas reliability is a probability measure for the likelihood of operating at 100%, 

robustness is the ability to maintain a given level of output after a failure. Ukkusuri et al 

(2007) differentiated robust optimization from stochastic programming as follows: 

stochastic programming accounts for uncertainty by optimizing the first moment of the 

distribution of the objective function, i.e. the expected value, while robust optimization 

also considers higher moments of the probability distribution. 

Robust optimization was introduced by Mulvey et al (1995). Three common 

methods have been developed to handle robust optimization: the mean-variance 

method, minimizing the coefficient of variation, and the min-max approach. The mean-
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variance method has an objective function composed of a weighted sum of the 

expected value and variance of the performance and was developed by Markowitz 

(1987) for different purposes.  The min-max approach minimizes regret in scenario 

planning, or in other words, minimizes the worst case scenario that could occur.  All 

three methods are discussed in detail by Yin (2008). 

There are a number of applications of robust network design in transportation.  

Chen et al (2006) proposed a robust continuous network design problem with toll 

pricing using the mean-variance method, and obtained the Pareto optimal frontier using 

a genetic algorithm.   

Ukkusuri et al (2007) formulated the discrete network design problem as a 

“robust network design problem” using a mean-variance approach with fixed weights.  

Sharma et al (2009) extended that work to obtaining a Pareto frontier for undetermined 

weights using genetic algorithm.  Lou et al (2009) considered the robust discrete 

network design problem as a mathematical program with complementarity constraints 

using a cutting plane method to solve the min-max formulation. 

Ordóñez and Zhao (2007) applied column generation to solve the min-max 

formulation of a robust transshipment continuous network design problem.  

Mudchanatongsuk et al (2008) followed up with a discrete version of the model.   

Karoonsoontawong and Waller (2007) applied the robust approach to the 

continuous network design problem with dynamic traffic assignment using cell 

transmission.  The formulation is based on the mean-variance approach.  The approach 

is limited to a single destination problem.   
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Yin (2008) proposed a robust approach to optimal traffic signal timing using all 

three methods described above, but only looked at an isolated fixed-time signalized 

intersection.  Further, Yin et al (2009) applies scenario based, sensitivity based and min-

max optimization based approaches to general road network improvement problems 

under demand uncertainty.   

Essentially, robust optimization provides a mechanism for tradeoffs between 

maximizing efficiency and mitigating risks of loss.  Decision-makers are provided with a 

tool that allows them to adjust the desired performance of the system based upon their 

preferences, or upon those imposed by the environment.  While this approach gives 

more options to the long term planner as the literature suggests, it can be an even more 

important tool for providing flexibility to the short term operations manager.  For 

example, a transportation network located on the Gulf coast might be subject to 

multiple flood seasons in a year, and a transportation manager could more effectively 

make use of a flexible robust toll system that adapts its prices based on information 

regarding the flood season and associated uncertainty regime. 

 

6.2.3. Modeling Capacity Uncertainty 

For the purpose of modeling uncertainty with a set of scenarios, it does not make sense 

to model link failures as binary states because it is not realistic and can also lead to 

accessibility issues in the network equilibrium convergence (isolated nodes with no link 

connections).  Instead, continuous degradation is more appropriate and can represent 

more realistic cases of link failure incidents.  Du and Nicholson (1997) concluded that 
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ignoring dependencies between link components could have significant effects on the 

results. 

Chen et al (2002) addressed capacity reliability by modeling the link capacities 

with multivariate normal distributions.  They use an orthogonal transform method 

developed by Chang et al (1994) to convert Monte Carlo simulations of the marginal 

distributions to that of a joint distribution.  The method empirically converts the 

correlation matrix of the distributions to a standard multivariate normal distribution, 

and then takes the inverse standard normal of the orthogonal matrix with simulated 

marginal distribution values.  If two uniform distributions representing the cumulative 

distribution of two random variables are converted to equivalent normal distributions 

for simulation, the correlation matrix would need to be transformed.  A nonlinear 

transformation is provided in Der Kiureghian and Liu (1986) and shown in Eq. (6.1). 

 

f5,�	 = f�	a1.047 − 0.047f�	4 b        (6.1) 

 

However, the method shown in Chang et al (1994) does not include mention of 

transforming the correlation matrix of two Bernoulli random variables.   

 Lo and Tung (2003) argued that the correlated methods are too complex for 

larger, more realistic networks and instead chose to model the link capacities as 

independent uniform random distributions.  Siu and Lo (2008) extended the model to 

having both stochastic capacity and demand. 
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 Sumalee and Watling (2003, 2008) propose a failure model based on correlating 

the causes behind the failures at links instead of at the links themselves.  This method 

was developed because simulating multi-dimensional distributions for all the links in a 

network was too complex.  Their proposed approach keeps the conditional link 

degradations independent from each other but still maintain a degree of correlation 

through the causes, such as the presence of “snow” or “high winds”.   

For small numbers of causes, this may relieve the problem of having to resolve 

correlation, but the problem of multi-dimensional distributions still exists if many causes 

are considered jointly.  Moreover, it can be argued that these causes are generally 

exogenous factors that are out of the control of transportation planning or operational 

agents.  For example, under Sumalee and Watling’s method, the causes “snow” and 

“high winds” may have correlation with each other and independent degradation 

conditioned upon the joint occurrences, but it doesn’t make practical sense for a toll 

managing agency to model the probability of there being snow on a particular day.  On 

the other hand, the agency can look at the correlated link failure scenarios given that 

there is snow and high winds on a particular day as a specific regime. 

 In the insurance industry, it is common to model a portfolio of risks with a 

multivariate Bernoulli random variable to indicate that claims have occurred, and to 

model the claim amounts as positive random variables (Frostig, 2001).  However, even 

multivariate Bernoulli random variables can quickly escalate in complexity with the size 

of the dimension (Teugels, 1990). 
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 One growing method that is adopted by the financial and insurance risk industry 

is the use of copulas, which are multivariate distributions whose marginals are uniform 

in the interval [0,1].  They are designed to map marginal distributions to a joint 

distribution while maintaining the dependency of the variables within its structure, and 

have been extremely effective in multivariate data analysis.  According to Sklar’s 

Theorem, given two marginals of any continuous cumulative distribution F(x) for 

Pr(X≤x)and G(y) for Pr(Y≤y), there exists a copula such that the joint distribution H(x,y) = 

C(F(x),G(y)) (Nelsen, 2006).  However, copulas require at least one parameter, often not 

the same as the Pearson correlation coefficient (unless it is a Gaussian copula), and so it 

may need estimation for the research at hand.  For a discussion of copulas applied to 

civil engineering systems see Singh, Jain and Tyagi (2007). 

Curtis et al (2006) overcame this problem of simulating multi-dimensional 

Bernoulli variables when they derived a method to sample multivariate Bernoulli 

random variables by transforming them into normal distributions.  They showed that if 

the mean and variance of the Bernoulli variables are treated as equivalent normal 

distributed parameters, there exists a threshold value τ such that Pr(X>τ) = Pr(Z=1), 

where Z is the Bernoulli variable and X is the transformed normal distributed variable 

with the same mean and variance.  The τ can be obtained with Eq. (6.2). 

 

� = ¡ + ¢√2 inverf(1 − 2¡)        (6.2) 
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Here the µ and σ are the mean and standard deviation of a Bernoulli variable.  By 

converting the covariance matrix to an equivalent matrix for the normal distribution, 

random samples can then be drawn.  In the new covariance matrix, the diagonals are 

kept the same, and the non-diagonals are determined from a correlation coefficient f5 

such that the relationship in Eq. (6.3) exists for each i,j pair. 

 

Pra�� > ��, �	 > �	; f5b = Σ�� + μ�μ�       (6.3) 

 

In generating the values for the proposed model, the bivariate normal distribution is 

solved with the mvncdf function in MATLAB R2007b.  A secant method bounded by        

[-0.9999,0.9999] is used to find the root value of ρ0. 

 Therefore, the method proposed by Curtis et al provides a simpler simulation 

approach for multivariate Bernoulli distributions for every link in a network. Correlations 

can be maintained at the link level, while causes can still be considered by the use of 

multiple regimes and representing different probability distributions.  Continuing the 

example discussed earlier, the method proposed here would look at the cases of snow, 

high winds, both, and neither, where each case can have correlated link failure 

occurrences.  The details of the proposed stochastic capacity model are presented in 

Section 6.3. 
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6.2.4. Flexible Network Design 

When accounting for uncertainty in network design, one approach is to provide 

solutions that can adapt to new information.  Such a flexible solution is different from 

robust or reliable strategies which focus on controlling a static probability distribution.  

Flexible strategies are applied to exploit uncertainty, as shown in the prior chapters.  A 

detailed review is provided in Chapter 2. 

 For projects that have highly asymmetric costs (such as an irreversible capital 

investment versus deferral) where the value of the project depends upon an underlying 

non-stationary stochastic process, the solution methods can be complex.  Kulatilaka and 

Trigeorgis (2001) illustrates this with a simple abstract example of a switching option 

between a starting Mode A and an alternative Mode B.  Under stochastic value 

conditions modeled as a decision tree, if the decision-maker does not have the option to 

switch from Mode A to Mode B then they would be subject to the outcomes of 

uncertainty.  If they have an option to switch to Mode B associated with some fixed 

switching cost, then there are compound interactions that take place.  If, on the other 

hand there are no costs to switch, then it is simply a case of option additivity that 

involves choosing the best mode in each branch of the decision tree.   

It turns out toll pricing as a day-to-day tactical network design strategy has 

negligible costs to changing operating mode, especially compared to other costlier 

strategies such as long term capacity expansion.  Since that is the case, toll pricing fits 

into the simplest category of option switching, which means that the value of flexibility 
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can be obtained simply by computing the best set of toll prices at each branch, or 

regime in the case of this research, in the decision tree.   

 Following this same argument, the strategy that Li et al (2007) proposes in terms 

of minimizing unreliability would only determine how to obtain the best value at each 

branch of the decision tree.  We propose to take a step further and show that toll 

pricing is an ideal strategy not only for managing uncertainty but for maintaining a 

flexible system under uncertainty because of the relatively negligible costs of changing 

operating mode (toll costs).  In addition we can quantify the value of this flexibility by 

comparing it to a fixed initial toll design that does not have the same flexibility to 

respond to changing conditions. 

 

 

6.3 PROPOSED NETWORK DEGRADATION SIMULATION MODEL 

 

While the robust toll pricing problem can be generalized to different modes and 

transport networks, the focus here is on a static traffic road network G(N,A) in a given 

peak period.  A dynamic network is not applied because the proposed toll pricing 

strategy for flexibility is tactical in natures, meant to respond to exogenous information 

that reflects a change in regime for a particular day and not as an operational strategy 

for minute to minute changes in stochastic demand.  Origin-destination (OD) demand is 

present from every node in N to every other node, and is assumed to be a function of 

the travel cost of the path.  An exponential function is used similar to Chen et al (2006) 
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to express the relationship between demand and cost, although other monotonically 

decreasing, continuous functions can be substituted in. 

 

,�� = ,��5 exp(−**��)        (6.4) 

 

Where 

 ,�� is the demand from origin r to destination s, for rs ∈ = OD pairs; 

 *�� is the path cost from origin r to destination s, for rs ∈ =; 

 ,��5  is the base demand when *�� = 0, for rs ∈ =; 

 * is a parameter for calibrating the elasticity of average demand in the network. 

 

Note that the inverse function is denoted with �X2(,��).  The Bureau of Public Roads 

(BPR) link performance function is used to relate the travel time on each link to the flow 

on the link, although other monotonically increasing, continuous functions with a 

capacity parameter can be substituted in.  The function is shown in Eq. (3.10) in Chapter 

3.  Drivers are assumed to behave under Wardrop’s principle of user equilibrium.   

 

6.3.1. Stochastic Capacity Simulation 

To model the stochastic capacity scenarios, the capacity parameter �� from Eq. (3.10) is 

treated as a random variable that is uniformly distributed between ?0, �x�C  and 

conditioned on an M-dimensional Bernoulli variable θ.  The term failure of a link ; ∈ & is 

used in this research to indicate the occurrence of θa = 1 leading to an independent 
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random degradation.  �x� is the non-degraded capacity value and M is the number of 

links in the network.   

 

P�(�� ≤ �|Î� = 1) = 3
+x�

        (6.5) 

 

The method from Curtis et al (2006) is used to transform the Bernoulli random variables 

to standard normal variables.  The orthogonal transform method from Chang et al 

(1994) is then used to simulate the joint distribution with uncorrelated Monte Carlo 

sample marginal distributions. 

Because of the computational expense imposed by the number of scenarios, an 

efficient sampling method called Latin hypercube sampling (LHS) is used to generate the 

random seeds.  LHS is a stratified random sampling technique that breaks down the 

sampling distribution into multiple regions to ensure full coverage of the range of the 

distribution in the most efficient manner.  This sampling method is used by Chen et al 

(2006) because it outperforms the Monte Carlo method.  In particular, the LHS Matlab 

utility developed by Budiman (2004) is used for convenience. 

To obtain the joint distribution of the Bernoulli variable, Monte Carlo simulation 

is used to generate the marginal standard normal random variables for each scenario 

Í ∈ ', which are then transformed using the eigenvector and diagonal eivenvalue 

matrix of the standard normal correlation matrix to a correlated vector of uniform 

random values. 
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Î,� = 1 if ¡� ≥ Ý�(Í)           (6.6) 

Ý(Í) = Φ5,2 dEΛ
2 4- Ä#(Í)e       (6.7) 

 

Where 

 Ä# ∈ ℝ° is a sample Í ∈ ' of a standard normally distributed random variable; 

 V is the eigenvector of the standard normal correlation matrix f5; 

 Λ is the diagonal matrix of eigenvalues from the standard normal correlation  

  matrix f5; 

 X∈ ℝ# is the vector of correlated percentiles; 

 ¡� is the probability of degradation at link a∈ &; 

 Φ5,2 is the cumulative distribution function of a standard normally distributed  

  variable; 

 Î,� is the ath element of the simulated M-dimensional Bernoulli variable. 

 

As discussed in Chang et al (1994), there may be errors introduced in this method for 

estimating the joint distribution using the orthogonal transform method, but it provides 

a simplified scheme of accounting for dependencies between links in the scenario 

generation. 

 A comparison of the simulation results for a 76-link network is conducted for 

different sample sizes using the LHS method as well as a simple random sampling (SRS) 

method.  A correlation coefficient of 0.25 is used for the same pairs of links as in the 

Sioux Falls network described in Appendix D.  The results are shown in TABLE 6-1. 
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TABLE 6-1. Comparison of Capacity Failure Simulation for different S and sampling methods 

 RMSE 

 SRS µ LHS µ SRS ρ LHS ρ 

S=50 0.0545 0.0325 0.1452 0.1427 

S=100 0.0353 0.0233 0.1061 0.1051 

S=200 0.0224 0.0143 0.0741 0.0741 

S=1000 0.0106 0.0067 0.0401 0.0400 

 

The root mean squared error (RMSE) of the mean values of the Bernoulli distributions 

(SRS µ, LHS µ) fall within 3 percent using the LHS method for a sample size of 100.  The 

RMSE of the correlation coefficients of the Bernoulli variables (SRS ρ, LHS ρ) are 

approximately 10 percent for 100 samples, and decreases to 4 percent for 1000 

samples.  The mean values of the coefficients that should be 0.25 are summarized under 

(SRS Est. ρ, LHS Est. ρ).   

 These results favor the LHS approach over the SRS approach for computational 

efficiency, and verify the convergence of the simulation model towards the true 

probabilities as the number of simulation scenarios increases to infinity. 

 A qualitative comparison of incident capacity modeling methodologies is 

presented in TABLE 6-2, to illustrate the versatility of the proposed capacity model in 

handling a diverse set of incidents.  The types of incidents are not meant to be 

comprehensive, but more illustrative in nature. 
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TABLE 6-2. Comparison of Capacity Models for Different Types of Incidents 

Type of 

Incident 

Proposed Capacity 

Modeling 

Estimation/Calibration Multivariate 

Normal 

Independent 

Links 

Cause-Based 

Road accident Include 

rubbernecking and 

upstream 

correlations, 

Bernoulli 

probabilities factored 

by length of link; use 

discrete capacity 

degradation for lanes 

instead of uniform 

distribution 

Determine probability 

distributions for number of 

lanes affected by typical 

accident from historical 

data; use accident rates per 

mile to determine Bernoulli 

probabilities 

Cannot model 

discrete lane 

degradation  

No correlations, 

so cannot model 

rubbernecking 

and upstream 

impacts 

Need to define 

generic 

correlations 

between traffic 

volume on link, 

downstream, and 

along opposite 

direction plus the 

independent 

conditional link 

probabilities 

Natural 

disaster 

Include geography-

based correlations 

(e.g. link proximity to 

floods or earthquake 

faults); multiple 

regimes for disaster 

threats; use 

triangular distribution 

for degradation 

Use occurrence rates of 

disasters for Bernoulli 

probabilities; define 

regimes based on threat of 

occurrence (e.g. higher 

hurricane warning levels 

result in higher Bernoulli 

probabilities 

Can handle 

geography-based 

correlations, but 

can’t handle low 

probability and 

high severity 

simultaneously 

Cannot model 

correlations 

based on 

proximity to 

disaster sources 

Need to 

enumerate all 

the possible 

occurrence 

scenarios by 

cause (flood 

from earthquake, 

flood from 

storm, flood 

from north, etc.)  

Terrorist 

threat 

Include no 

correlation or use 

criticality of links by 

demand; multiple 

regimes for security 

threats; degradation 

may need to be 

scenario-based 

Regimes would be used to 

model different threat 

scenarios or game-

theoretic models with 

security agencies; higher 

threat levels would have 

higher Bernoulli 

probabilities 

Cannot handle 

low probability 

high severity 

situations 

May be ok for 

some scenarios 

but not for 

large-scale 

coordinated 

attack scenarios 

Should work well 

since the 

scenario 

planning 

approach would 

also be cause-

based 

Infrastructure 

power failure 

Model link 

correlation based on 

power grid failure 

tree 

Bernoulli probabilities 

should be obtained from 

utility agencies handling 

the power grid for the 

infrastructure 

Works fine Cannot model 

power grid 

correlations 

Can assign grid 

failure tree to 

causes 

Extreme 

weather 

Bernoulli 

probabilities factored 

by length of link; 

multiple regimes for 

different seasons 

Data can be collected for 

link capacities as a function 

of weather conditions for 

multiple seasons 

Works well for 

continuous 

degradation from 

weather 

Cannot model 

the observed 

correlations 

from weather 

due to 

geography and 

geometries 

Depending on 

the weather 

condition which 

may involve 

many causes 

Infrastructure 

deterioration 

Bernoulli 

probabilities factored 

by length of link; 

multiple regimes 

based on different 

pavement/bridge 

performance 

categories 

Data for impact of 

deterioration of pavement 

or structure on links can be 

obtained 

Works fine Should be ok 

but it would 

need to have 

continuous 

degradation 

Causes would 

generally be 

confined to links 

so it would be 

the same as the 

multivariate 

normal 

Transit rail 

failure 

Include correlation 

along transit routes in 

a transit network 

Rail reliability data can be 

used to determine 

Bernoulli probabilities 

Works fine Cannot model 

correlations 

from connected 

transit routes 

Need to 

enumerate the 

causes for each 

transit route 

 

 



www.manaraa.com

181 

 

The types of incidents are listed in the first column.  The customization of the proposed 

capacity model for each particular incident is shown in the second column, along with 

the estimation/calibration issues in the third column.  This is in comparison to the using 

multivariate normal distributions such as Chen et al (2002) for the fourth column, using 

independent link failures by Lo and Tung (2003) in the fifth column, and the caused-

based modeling by Sumalee and Watling (2003, 2008) in the last column. 

 Considerations for combinations of multiple incident risks can be done, but the 

major challenge would be estimating the joint distribution parameters.  For example, 

trying to combine blizzard effects with road accidents would require accident data that 

includes presence of snow, where the marginal distributions for snow or accidents 

should be the individual distributions.  Copulas, as introduced earlier, might be a good 

mechanism for handling this with only the marginal distributions and observed data, but 

it is beyond the scope of this paper. 

 

6.3.2. Multi-Objective Robust Toll Pricing Formulation 

To illustrate the use of a robust approach to network toll pricing in an operational 

setting, a multi-objective mean-variance formulation similar to Chen et al (2006) is 

chosen.  Eq. (6.8) is a vector of two objectives, one that maximizes the expected social 

welfare and one that minimizes the variance of the social welfare.  The stochastic 

element in the proposed model is the capacity of the links in the network as opposed to 

the OD demand.  The objective function of the toll pricing problem is also chosen to be 

social welfare maximization as shown in Eq. (6.9). 
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max � = (�2, �4 )         (6.8) 

 

Where 

     �2 = >?û2(�, Í)C 

     �4 = −E?û2(�, Í)C = −>?û24(�, Í)C + >4?û2(�, Í)C 

 

F1 and F2 are the first and second moments, respectively, of the stochastic social 

welfare.  The toll pricing problem is a non-convex bi-level problem where the upper 

level objective function is shown in Eq. (6.9) with constraints in Eq. (6.10) – (6.11), 

where �� and ,�� are determined by the lower level problem defined in Eq. (6.12) – 

(6.15).   

 

û2 = max ∑ � ���X2( ), Ñ¿À(1)
5��∈/ − ∑ ��a��(�), �(Í)b��(�)�∈p    (6.9) 

Subject to 

 �
�3 ≥ �� ≥ 0, �� ≥ 0, ; ∈ &̅      (6.10) 

 �� = 0, �� ≥ 0, ; ∈ &\&̅       (6.11) 
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û4 = min ∑ � d��(1, ��(Í)) + 2
2 ��e ,13�5�∈p − ∑ � ���X2( ), Ñ¿À(1)5��∈/   (6.12) 

Subject to 

 ∑ ����� = ,��, � ∈ =      (6.13) 

 �� = ∑ ∑ ������,������∈/ ,    ∀;      (6.14) 

 ���� ≥ 0,     ∀�, �        (6.15) 

 

Where 

 drs is the demand function along OD rs, where an exponential function is  

used as shown in Eq. (6.4) 

xa is the flow at link a 

ta is the travel time across link a as a function of flow, determined by Eq. (3.10) 

ya is the toll price set on link ; ∈ & 

A is the set of links 

 &̅ is the subset of links that can be priced, where the complement is A\&̅ 

 3 is the value of time (assumed homogeneous) 

���� is the flow along path k for O-D pair rs ∈ = 

��,���  is the link-path incidence, 1 if link a is on path k for OD pair rs, 0 otherwise 

 Í ∈ ' is one realization of the capacities �� at each link a, for up to S scenarios 

 

Scenario simulation is used to obtain the expected value and variance of the social 

welfare.  As shown in Sharma et al (2009), a multi-objective robust network design 
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problem can result in a non-convex Pareto optimal frontier.  As pointed out in Das and 

Dennis (1997), solution methods that use a priori articulation of preferences such as 

minimizing different weighted sums of the objectives only work if the Pareto frontier is 

convex.  Therefore, heuristics are necessary to obtain an approximate Pareto optimal 

set. 

In the multi-objective problems and methods reviewed by Marler and Arora 

(2004), the genetic algorithm (GA) is discussed as one of the more popular direct 

methods for solving multi-objective problems with a posterior articulation of 

preferences.  Indeed, this is the method used by Chen et al (2006) and Sharma et al 

(2009).  One of the faster GA methods is the NSGA II algorithm by Deb et al (2002).  They 

compare their algorithm to other multi-objective heuristics using several simple multi-

objective problems with known solutions.   

However, Marler and Arora (2004) mentioned there is a high computational 

expense to using a genetic algorithm to solve the multi-objective problem despite its 

effectiveness in problems that contain both discrete and continuous decision variables.  

This is particularly the case for robust network optimization problems, which can 

feature high dimensionality and computationally costly function evaluations.  The 

computational bottleneck would be in the function computations, not in the sorting 

routines.  In this case, an alternative solution algorithm is proposed for its 

computational efficiency relative to the number of function evaluations. 
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6.3.3. MO-RBF Solution Algorithm for Robust Toll Pricing Problem 

The solution algorithm presented at the end of Chapter 5 is shown to be a faster 

converging algorithm for multi-objective problems compared to the NSGA II in terms of 

number of function evaluations.  The MO-RBF algorithm is used to solve the robust toll 

pricing problem within each regime, as summarized in FIGURE 6-1. 

 

 

6.4 NUMERICAL TESTS ON SIOUX FALLS, SD 

 

A numerical test is conducted with the Sioux Falls network shown in Appendix D.  The 

following changes were made.  The ten links that are investment candidates in the 

continuous network design problem are changed to be the toll links.  The value-of-time 

parameter is set to 3 =  $10/hour.  For the parameters in Eq. (6.4), * = 1  for 

convenience and the base demand is set to the fixed OD demand values from the Sioux 

Falls network. 

In first-best marginal cost toll pricing, the difference between the marginal travel 

time and the average travel time at the SO equilibrium represents the optimal toll.  A 

maximum toll of $10 is used for the following tests. 
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FIGURE 6-1. Multi-objective stochastic response surface algorithm, MO-RBF, for robust toll 

pricing. 

 

The multi-start MSRBF parameters are set to n0 = 21, ρM0 = 0.1*Ymax,  rmax = 5, and ζmax = 

10, P = 1000, and Nmax = 2500.  For the elastic demand user equilibrium, the Frank-Wolfe 

algorithm shown in Sheffi (1985) is employed to obtain the solution with a maximum of 

100 iterations and tolerance of 0.01.   
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TABLE 6-3 provides the social welfare value for the base “No Toll, No Failures” 

condition as well as the “Toll with No Failures” condition.  The optimal second-best tolls 

in the No Failures scenario is obtained using the multi-start MSRBF algorithm by Regis 

and Shoemaker (2007) and tested in the first part of Chapter 5.   

 

TABLE 6-3. Sioux Falls Base Deterministic Social Welfare 

 
Social Welfare 

(kveh*hr) 

No Toll UE 334.998 

No Toll SO 342.208 

Second-Best Toll UE 335.440 

 

The key observation from these base values is that the deterministic social welfare 

bounded by the first best SO solution does not appear to be significantly higher than the 

UE solution, and second-best toll pricing of the 10 links in Sioux Falls appears to have 

negligible benefits.  A network manager considering these 10 links under a deterministic 

setting would dismiss them as potential locations for pricing, and in fact may not even 

consider toll pricing to be a viable strategy at all given the limited upper bound from the 

system optimal solution.  However, under a multiple regime volatile setting the same 

set of toll links can offer a much wider range of strategies in managing the network 

robustness. 

 

6.4.1. Sensitivity Analysis 

First, the stochastic convergence of the solution algorithm in terms of the number of 

scenarios is empirically tested for the Sioux Falls network with S = 250 and maximum 
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iterations Nmax = 200.  The algorithm is applied to the 5% independent Bernoulli 

probability failure regime, using P = 2000 candidate points for the MO-RBF.  The run 

time is 1927 min, compared to a run time of 3399 min for S = 300 and Nmax = 300.  The 

Pareto sets are shown in FIGURE 6-2.  The computations were performed on Matlab 

7.7.0 (R2008b) on a Windows XP Professional 2002 SP3, Intel Core2 Quad CPU with 

Q6600 @2.40GHz and 2GB RAM. 

 

 

FIGURE 6-2. 5% failure regime solution space for different number of scenarios S and 

iterations Nmax. 

 

The à-indicator is a binary performance measure defined by Zitzler et al (2003) as an 

effective quantitative measure to compare two approximate Pareto sets. First, an 
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objective value µ2 = (µ22, µ42, … , µ¥2) ∈ û  is defined to à -dominate another objective 

vector µ4 = (µ24, µ44, … , µ¥4) ∈ û, i.e. µ2 ≽5 µ4, if and only if ∀1 ≤ � ≤ N: µ�2 ≤ àµ�4 for a 

given à > 0.   

Then the à-indicator 65(&,  ) for two approximate Pareto sets A, B is defined as 

the minimum factor à  such that any objective vector in B is à -dominated by at least one 

objective vector in A.  In other words, if µ2 ≻ µ4 then these exists à < 1 such that µ2 à-

dominates µ4, for µ2 ∈ & and µ4 ∈  . 

 

65(&,  ) = max³I∈8 min³i∈p max2	�	¥ ³Òi³ÒI         (6.16) 

 

One application of the ϵ-indicator is its measure of stochastic convergence for 

approximate Pareto sets.  From intuition, as the number of scenarios of the MO-RBF 

approaches infinity, the variance of the ϵ-indicator of repeated Pareto set 

approximations with a common set should approach zero.  This measure can be used as 

a tolerance for determining the minimum number of scenarios. 

The five sample runs of S = 250 and Nmax = 200 results in FIGURE 6-2 are 

compared to the S = 300 and Nmax = 300 run to obtain the five à -indicators 

65(&°×4&5,�
�Ð ×455� ,  °×Ó55,�
�Ð ×Ó55) for i = 1 to 5: 1.0081, 1.0133, 1.0847, 1.0055, and 

1.1829.  The standard error of the 5 indicators at S = 250 and Nmax = 200 is 0.0343, which 

is a tolerable error.  Note that runs 1 – 4 are very similar, with 1 and 3 almost identical.  

However, note that run number 5 starts off with a very different pattern than the 

others.  Higher values of S and Nmax should overcome this variation.  
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Comparing the S = 300 and Nmax = 300 run to the deterministic capacity toll 

conditions, the maximum social welfare under 5% failure rates decreases slightly to 

330.58 kveh*hrs, although the variance at that solution point is 12.05 kveh2*hrs2.  

However, the operations manager can choose a solution that would reduce the variance 

by 70% to 3.64 kveh2*hrs2 by allowing the expected social welfare to worsen by 9% to 

300.44 kveh*hrs.  Depending on the risk averseness of the manager in this regime, a 

wide range of toll prices can be set to manage the robustness of their network against 

link degradation.   

 

6.4.2. Flexible Robust Toll Pricing with 5% and 50% Regimes 

The transportation operations manager for Sioux Falls may be setting the toll prices to 

incorporate robustness against incidents that fall under two different regimes instead: a 

low likelihood regime with an independent failure rate of 5% at each link, and a high 

likelihood regime with 50% independent failure rates.  For example, the two regimes 

may represent a dry season versus a wet season when considering roadway flooding.   

The “PF75” to “PF300” represent the approximate Pareto solution set for the 50% 

regime as a function of the number of iterations from n = 75 to Nmax = 300.  This shows 

the fast convergence of the MO-RBF algorithm in terms of the number of objective 

function evaluations.  As the number of iterations increases from 75 to 150, 200, and 

250, the 65(µ¥, µÓ55) decreases from 1.040 to 1.014, 1.005, and 1.005.  The à-indicator 

appears to stop improving at 200 iterations.   
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As a flexibility tool, the robust formulation of the toll pricing under stochastic 

capacity allows the operations manager to adapt their toll pricing strategy to new 

information regarding the state of the current regime.  For example, the weather station 

may report one day that the wet season has set in and there is a much higher likelihood 

for rain to impact road capacities. 

The problem of measuring the value of flexibility in a multi-objective formulation 

is that we need to be able to quantify the difference between two approximate 

objective vectors.  To quantify the value of flexibility, we propose using the à-indicator 

to compare a flexible strategy against an inflexible or static strategy from Section 6.4.1 

that operates under the 5% regime all the time.  The differences in the à-indicator can 

be converted to social welfare value using a fixed conversion λ to show the benefit of a 

flexible strategy compared to the static strategy.  The value of flexibility would be the 

improvement of the flexible system compared to the inflexible system in the 50% 

regime setting shown in FIGURE 6-3. 
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FIGURE 6-3. Pareto frontier with 5% and 50% failure regimes. 

 

The “5% PF in 50%” shows the performance of the same solution vector for the 5% 

regime from FIGURE 6-2 when operating in the 50% regime.  The 5% Pareto solution 

operating in the 50% failure regime is clearly dominated by the 50% Pareto solution. 

The maximum expected value in the 50% regime further decreases from 330.58 

kveh*hrs in the 5% failure regime to 285.32 kveh*hrs.  Furthermore, the minimum 

variance increases from 12.05 kveh2*hrs2 in the 5% regime to 71.58 kveh2*hrs2.  The 5% 

Pareto solution, however, has a maximum expected value of 284.95 kveh*hrs and 

minimum variance of 108.96 kveh2*hrs2 in the 50% regime.   
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Since the expected value objective is a maximization function, the reciprocal of à 

is used for that objective.  Hence, 65(5%, 50%) = 1.522.  The value of flexibility F can 

be interpreted as follows. 

 

� = Ì(65(&,  ) − 1)M          (6.17) 

 

Where p is the average proportion of time that the network falls under the 50% regime. 

Thus having a flexible toll system in this example with two regimes at 5% failure and 

50% failure as opposed to a single regime robust toll system increases the value of the 

system by 0.522λp, which may be in units representing a combination of expected social 

welfare and risk of loss of social welfare. 

 

 

6.5 DISCUSSION 

 

The goal of the research is to establish robust optimization as a tool for increasing 

flexibility in traffic operations rather than just in long term planning as suggested by 

most of the applications in the literature.  Toll pricing is chosen to exemplify this 

approach.  Second best pricing using an arbitrary set of ten links in Sioux Falls under a 

deterministic setting suggests negligible benefits, as shown in TABLE 6-3.  However, 

robust toll pricing with the same set of links using a mean-variance formulation under 

multiple uncertainty regimes can give a decision-maker significant leverage in their 



www.manaraa.com

194 

 

flexibility.  Not only will the operations managers be able to choose a set of tolls based 

on their personal or institutional risk averseness, as indicated in FIGURE 6-2, they can 

also adapt their Pareto optimal toll price sets to new uncertainty regimes as shown in 

FIGURE 6-3.   

The stochastic capacities are modeled as a multivariate Bernoulli random 

variable for occurrences of degradation.  Scenarios are generated by transforming the 

multivariate Bernoulli variables into equivalent multivariate normal distributions using 

the method by Curtis, which are then simulated with an orthogonal transform approach.  

This simulation approach is compared to existing methods as a simple approach that can 

nonetheless capture multiple correlations between different links for evaluating 

degradations in a network. 

The MO-RBF algorithm proposed in Chapter 5 is used to solve the robust toll 

pricing problem in each regime.  Numerical tests with Sioux Falls shows convergence can 

be achieved by the MO-RBF algorithm within 200 iterations in terms of the change in 

the à-indicator. 

The value of flexibility to modify the toll pricing to suit a particular regime is 

illustrated for Sioux Falls under a low occurrence season of 5% independent link failure 

likelihood and a high season of 50% failure likelihood.  In that example, the flexibility 

increases the value of system in terms of the à-indicator by 0.522λp, where λ is a fixed 

conversion rate of the à to some value, and p is the proportion of time under the 50% 

regime setting.   
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“Remember not only to say the right thing in the right place, but far more difficult still, to 

leave unsaid the wrong thing at the tempting moment.” – Benjamin Franklin 

 

CHAPTER 7 CONCLUSION 

 

 

The goals of this research were to explore various models, algorithms, and policies 

related to flexible transportation network management under uncertainty.  To 

summarize the motivation of this work, let us re-state the challenge in Chapter 1 put 

forth by a well-regarded transportation practitioner: “The inherited culture of today’s 

transportation agencies is dominated by facility development and preservation.  

Changes are required if state and local agencies are to have a significant impact on the 

characteristic 21
st

 century mobility problems of congestion, unreliability, and insecurity”. 

 While the solutions proposed in this research seek to remedy many of these 

inadequacies in the public sector in infrastructure in dealing with today’s volatile 



www.manaraa.com

196 

 

environment, they are developed under a generalized flexible transportation network 

management that can be applied to many other related areas. 

 From a most general perspective, this research has 1) established a relationship 

between a tool for managing networks with both stationary and non-stationary 

uncertainty; 2) proven empirically that such network management tools can benefit 

from incorporating information from monitoring uncertainty; 3) improved upon state-

of-the-art methods to solving problems with multiple objectives given certain criteria; 4) 

developed a new method for simulating scenarios with inter-related components; and 5) 

demonstrated how to quantify the value of flexibility for networks with stationary and 

non-stationary uncertainty, using network design models that may have a single or 

multiple objectives. 

 

 

7.1 SUMMARY OF CONTRIBUTIONS 

 

To further summarize the contributions in this research, consider the following findings 

categorized by policies, models, and algorithms. 

 

7.1.1. Policies 

Several policies are examined in this research.  First, the traditional approach in 

transportation planning is questioned by using real options to show that there is a cost 

to committing to a preferred alternative.  Depending on the volatility estimated for OD 
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demand and congestion settings in a network, it may be more worth it to maintain a set 

of mutually exclusive conditional alternatives instead. 

 Second, a network design can gain significant flexibility by being decoupled into 

its individual link components.  While the trade-off in such a policy is the loss of 

flexibility to re-design the network, the gain from being able to stage the components 

can be substantial. 

 Third, a severity threshold has been identified for which fire planning authorities 

can determine whether to apply more simplistic static location resource allocation 

models or to use more sophisticated relocation models in their day-to-day operational 

planning. 

 Fourth, incorporating non-stationary time series data directly into network 

models such as server relocation can improve performance of those models because 

they account for hysteresis.  The abundance of monitored time series data in other 

fields such as traffic incident management, airline operations, and supply chain 

management can benefit significantly from this finding. 

 Fifth, toll pricing is one type of network design strategy that can be used to 

manage network robustness in a flexible manner because of its negligible switching 

costs.  Other network design strategies that have negligible switching costs should also 

exhibit this property –ramp metering, signal control on arterials, project scheduling, 

among others. 
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7.1.2. Models 

The network investment deferral option (NIDO) model quantifies the value of flexibility 

to defer and re-design a network over time.  This allows decision-makers to evaluate 

flexible network designs in a non-stationary stochastic setting, even if they cannot solve 

such a design problem. 

 By fixing the network design at the initial time, it becomes possible to solve the 

optimal design with respect to the option value of the network investment.  This 

proposed model is the network option design problem (NODP).  The NODP fits especially 

well in the existing transportation planning practice because it can be used to determine 

the optimal design and decision to defer simultaneously. 

By allowing the components of a network design to be invested or deferred 

separately, a link investment deferral option set (LIDOS) model is defined.  By further 

constraining this model to prevent the order of link investments to change in the future, 

a solvable ordered link investment deferral option set (OLIDOS) model is determined.  

This model determines the optimal order and deferral decisions for each link or group of 

links in a pre-defined network design, which serves as an effective strategy to mitigate 

the downside risk from non-stationary uncertainty. 

The k-facility p-median problem (KPMP) considers an alternative approach to 

modeling the p-median problem with co-location and multiple server constraints by 

using integers to represent the number of servers at a node.  The model has applicability 

in areas where the number of servers relative to the number of nodes is large and the 

demand typically requires more than one server, such as wildfires and air tanker initial 
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attacks.  Other applications of this model may exist in the airline industry and in 

humanitarian logistics, where pre-positioning is on a global scale with potentially large-

scale disasters. 

The chance-constrained dynamic k-server relocation problem (CDKRP) directly 

incorporates hysteresis through the use of non-stationary variables as chance 

constraints.  As discussed in Section 7.1.1, this model is more cost effective than 

relocation models that do not account for hysteresis. 

The network degradation simulation model can simulate stationary scenarios for 

correlated failure occurrences between multiple links.  It uses a multivariate Bernoulli 

random variable and finds an equivalent multivariate normal distribution representation 

that can then be simulated using orthogonal transforms.  This method can have 

significant impact on the way scenario planning in network settings is handled because 

it provides a simple mechanism of estimating probabilities of failure with the Bernoulli 

variables while handling correlations between link failure occurrences.   

 

7.1.3. Algorithms 

Although the multi-option LSM algorithm is limited in its applicability, it can nonetheless 

be used in an algorithm to obtain the solution to the OLIDOS and thus a lower bound to 

the ILIDOS.  The key is in recognizing that the feasible solutions to OLIDOS can be 

enumerated; for each enumeration the value of the link option set can be solved using 

one of the stylized conditions of the multi-option LSM. 
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 The multi-objective radial basis function (MO-RBF) optimization method is 

shown to be a much faster heuristic than the genetic algorithm for multi-objective 

problems.  While the algorithm is demonstrated on a simple non-convex function in 

Chapter 5 and on a robust toll pricing problem in Chapter 6, it can clearly be applied to 

any number of large-scale multi-objective problems with continuous decision variables.   

 

 

7.2 FUTURE RESEARCH 

 

Overall the direction of this research lies in practical applications of the models to real 

large-scale network case studies; expanding the network-based real option models into 

a suite of models for expanding a decision-makers network management strategies 

given non-stationary uncertainty; and tackling the other element of dynamic strategic 

planning: the decision-makers.  Detailed extensions are discussed below. 

 

7.2.1. Network-based Real Option Models 

The applications and extensions to this research are abundant.  Practical applications 

using time series OD data can provide case studies to practitioners on the benefits of 

these approaches to transportation planning as well as for more generalized network 

design investments.  Other real option strategies, network design controls, and 

stochastic simulation models can be considered in these case studies.  For example, 

intercity truck OD time series data is available in some regions such as Iran.  This data 
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can be used to estimate OD demand and provide dynamic strategies for investing and 

managing the road network for truck flows.   

 Specific issues also need to be addressed.  The stochastic variable such as 

demand is treated as an exogenous variable in these models, so that changes in the 

network would not have an effect on the demand.  The NODP solution method is a 

heuristic that only works with continuous design variables.  The OLIDOS has 

computational cost issues when dealing with large numbers of projects or link 

combinations which will require meta-heuristics to approximate. 

 By looking at multi-objective network design problems under non-stationary 

uncertainty, it would be possible to examine how the Pareto sets of the option value 

vectors may hold different properties from the corresponding objective vectors. 

 Multiple agency collaboration and competition in network design can also be 

examined using real options; it can be used to determine whether an agency should join 

with another agency in bidding for project funding; the real option valuation of multi-

agency network design game may result in different Nash equilibria from an evaluation 

using expected total travel costs.   

 

7.2.2. Mobile Server Relocation Models 

Future steps would involve agency collaboration to gather more data to present a 

realistic model for statewide implement.  This includes more CDF units, more fire 

weather station input, more types of resources in addition to air tankers, and calibrating 

the parameters for resource demand and relating relocation costs to deployment time.   
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Future modeling research should handle different types of resources, congested 

links for ground resources, and some consideration for demand correlations.  Other fire 

weather data and stochastic processes could be tested for better goodness-of-fit.   

This research can also be generalized for many other network models that utilize 

demand under uncertainty.  For example, incident management on road networks can 

benefit by characterizing traffic volumes with accident rates and using that information 

as a Markov model for multi-period relocation of toll vehicles.  In supply chain networks, 

the location of distribution centers can benefit from the characterization of consumer 

demand as stochastic processes.  In humanitarian logistics, the pre-positioning of 

resources for disaster relief may benefit from the incorporation of hysteresis in resource 

relocation models. 

 

7.2.3. Global Heuristics with Radial Basis Functions 

Future efforts in this area should include more rigorous tweaking and testing of the 

algorithms for large-scale networks.  The performance of the algorithm can be 

empirically tested separately for the number of allowable link investments and the size 

of the network.   

In addition, the algorithms could be refined to take advantage of the underlying 

network data structure or combined with other heuristics for the CNDP.  For example, it 

is also possible to combine the RBF interpolation within an evolutionary structure such 

as the GA (see ESGRBF from Shoemaker et al (2007)).   
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7.2.4. Network Degradation under Multiple Failure Regimes 

Future work in this direction should consider other methods of modeling the 

uncertainty, perhaps correlating the Bernoulli occurrences with the amount of 

degradation using copulas.   

The proposed network degradation simulation model can be customized for 

particular real world uncertainties to quantitatively compare the model’s ability to 

handle the wide range of failure types suggested in TABLE 6-2.   

Markov processes can also be considered for evaluating correlations between 

different regimes.  This extension would allow us to consider non-stationary stochastic 

behavior in regimes where the stochastic capacity distributions in a given regime is 

conditional on the likelihood of that regime occurring.  Certain types of failure or 

degradation with recurrent elements, such as pavement deterioration, would find use 

for this.   
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APPENDIX A. EXAMPLE OF MULTI-OPTION INVESTMENT 

 

The following example is from Trigeorgis (1991).  An investment project is determined 

to have an expected profit of 1000 units if invested immediately and 1015 units cost.  

Using traditional NPV analysis, the project would be rejected because the NPV is 

negative: 

 

OPE(N� �M���N ) = E − 6 = 1000 − 1015 = −15 

 

However, this does not account for the flexibility to adapt the decisions using a number 

of real options.  The following list of options are available to the investor, where their 

premiums are obtained by standard option pricing for each one in isolation.  FIGURE A-1 

illustrates the different options and how they interact with each other. 
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option to defer investment: 147 

option to abandon during construction: 34 

option to contract project scale: 62 

option to expand production: 133 

option to switch use (abandon for salvage): 121 

 

FIGURE A-1 Example complex research and development project (Trigeorgis, 1991) 
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Adding the individual option premiums together would result in an overestimated value 

of 497 units (or 482 after including the static NPV of -15 units).  This method of summing 

the individual options up is invalid because exercising certain prior real options may kill 

or alter the value of subsequent options.  If these interactions are taken into account by 

computing the options together, the combined premium value of all five options turns 

out to be 349, leading to an option value of 334 units.  It can be observed that this 

amount is just 70 percent of the sum. 
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APPENDIX B.  PROOF OF CONVERGENCE FOR LEAST SQUARES 

MONTE CARLO SIMULATION 

 

 

The following formal definitions and proof of convergence for the LSM algorithm is from 

Longstaff and Schwartz (2001). 

 

Let the probability space be defined by (Ω, ℱ, Ψ) and finite time horizon [0,T] where the 

state space Ω is the set of all possible realizations of the stochastic process between 

time 0 and T and has typical element ω representing a sample path, ℱ is the sigma field 

of distinguishable events at time T, and ψ is a probability measure defined on the 

elements of ℱ.  ℱ = 8ℱ7; � ∈ ?0, èC: is defined to be the augmented filtration generated 

by the relevant price processes for the investment, and assume that ℱ- = ℱ. 

At time t2, the LSM stopping strategy is the same as the optimal strategy; the 

option is exercised if it is in the money.  Under the given assumptions, the conditional 
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expectation function Φ(ω; t1) is a function only of Ý7i.  If Φ(ω; t1) satisfies the indicated 

conditions, then Theorem IV.9.1 of Sansone (1959) implies that the convergence of 

ΦΠ(ω; t1) to Φ(ω; t1) is uniform in Π on the set (0,∞), where the first Π Laguerre 

polynomials are used as the set of basis functions.  This implies that for a given à, there 

exists an Π such that supý�i |Φ(Í; �2) − ΦΠ(Í; �2)| < à/2.  From the integrability 

conditions and Theorem 3.5 of White (1984), the fitted value of the LSM regression 

ΦÏ Π(ω; t2) converges in probability to ΦΠ(ω; t2) as P → ∞, 

 

lim�→∞
Pr  Ãð@(Í; �2) − ðÏ@(Í; �2)Ã > f2# = 0 

 

Thus, for any à, there is an Π such that 

 

lim�→∞
PrgÃð(Í; �2) − ðÏ@(Í; �2)Ã > f j = 0 

 

To complete the proof, let’s partition the state space Ω into five sets: 

1) The set of paths where the option is exercised at time t1 under both the optimal 

and the LSM strategy;  

2) The set of paths where the option is not exercised at time t1 under either the 

optimal or LSM strategies;  

3) The set of paths where the option is exercised at time t1 under the LSM strategy 

but not under the optimal strategy; 
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4) The set of paths where the option is exercised at time t1 under the optimal 

strategy, but not under the LSM strategy; 

5) A zero-probability set of paths for which the difference between Φ(Í; �2) and 

ΦÏ Π(ω; t2) is greater than à as P → ∞.   

 

Now consider a portfolio consisting of a long position in an option exercised using the 

LSM strategy, an investment of à in a money market account, and a short position in an 

option exercised using the optimal strategy.  It can be shown that cash flows are all non-

negative for each path in sets 1) – 4).  Since the pathwise cash flows are non-negative, 

averages over paths are non-negative, and the result follows from a standard no-

arbitrage argument, the definition of π(X), and the law of large numbers. 
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APPENDIX C. PROOF OF CONVERGENCE FOR STOCHASTIC 

RESPONSE SURFACE METHOD 

 

 

The following formal definitions and proof of convergence for the SRS framework is 

from Regis and Shoemaker (2007). 

 

First let’s define two conditions required by the SRS method. 

 

Condition C.1 – For each N ≥ N5, �¥,2, �¥,4, … , �¥,7 are conditionally independent given 

the random vectors in ℰ¥X2. 

 

Where n is an iteration in the algorithm, n0 is the initial set of iterations, Yn is a set of 

randomly generated samples, Xn is the chosen candidate from the set of Yn, t is the 
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number of random candidate points, and ℰ¥ is the set of random samples Yn and the 

chosen candidate Xn, , and ℰ¥ ≔ oÝ2, … , Ý¥� , �¥�,2, … , �¥�,7, … , �¥,2, … , �¥,7q. 

 

Condition C.2 – For any j = 1, …, t, � ∈ � and δ > 0, there exists C	(�, �) > 0 such that 

Prg�¥,	 ∈  (�, �) ∩ �|¢(ℰ¥X2)j ≥ C	(�, �) 

for all n ≥ n5.  Here B(x,δ) is the open ball of radius δ centered at x and σ(ℰ�X2) is the 

σ-field generated by the random vectors in ℰ�X2. 

 

The following theorem states the convergence given the two conditions C.1 and C.2. 

 

Theorem C.1 – Let f be a function defined on � ⊆ ℝÑ and suppose that x
*
 is the unique 

global minimize of f on D in the sense that �(�∗) = inf~∈¬ �(�) > −∞  and 

inf~∈¬,‖~X~∗‖Dη �(�) > �(�∗) for all η > 0.  Suppose further that the SRS method 

generates the random vectors 8Ý¥:¥D2 and o�¥,2, … , �¥,7q¥D¥�  satisfying Conditions C.1 

and C.2.  Define the sequence of random vectors 8Ý¥∗:¥D2  as follows: Ý¥∗ = Ý¥X2∗  

otherwise.  Then Ý¥∗ → �∗ almost surely. 

 

Proof – Fix à > 0  and N ≥ N5 + 1 .  Then ?Ý¥ ∈ �: �(Ý¥) < �(�∗) + àC = ?Ý¥ ∈
�: |�(Ý¥) − �(�∗)| < àC.  Since f is continuous on x

*, there exists �(à) > 0 such that 

|�(�) − �(�∗)| < à  whenever ‖� − �∗‖ < �(à) .  Hence, ?Ý¥ ∈ �: |�(Ý¥) − �(�∗)| <
àC ⊇ ?Ý¥ ∈ �: ‖Ý¥ − �∗‖ < �(à)C, and so, 

 



www.manaraa.com

212 

 

Pr?Ý¥ ∈ �: |�(Ý¥) − �(�∗)| < à|¢(ℰ¥X4)C ≥ Pr?Ý¥ ∈ �: ‖Ý¥ − �∗‖ < �(à)|¢(ℰ¥X4)C
= PrgÝ¥ ∈  a�∗, �(à)b ∩ �|¢(ℰ¥X4)j 

 

Observe that if aY�X2,�b� ∈  a�∗, �(à)b ∩ � for each j = 1, …, t, then the evaluation 

point Ý¥ ∈  a�∗, �(à)b ∩ �.  Hence, 

 

PrgÝ¥ ∈  a�∗, �(à)b ∩ �|¢(ℰ¥X4)j
≥ Pr ¶a�¥X2,	b� ∈  a�∗, �(à)b ∩ �, % = 1, … , �|¢(ℰ¥X4)·
≥ Prg�¥X2,	 ∈  a�∗, �(à)b ∩ �, % = 1, … , �|¢(ℰ¥X4)j
= G Prg�¥X2,	 ∈  a�∗, �(à)b ∩ �|¢(ℰ¥X4)j

7

	×2

≥ GC	a�∗, �(à)b =: ¸(à) > 0
7

	×2
 

 

Where the equality and inequality involving the product sign follow from conditions C.1 

and C.2.  Thus, the two equations above lead to: 

 

Pr?Ý¥ ∈ �: �(Ý¥) < �(�∗) + à|¢(ℰ¥X4)C ≥ ¸(à) 

 

By following the same argument as in the proof of the theorem in p.40 of Spall (2003), 

we obtain Ý¥∗ → �∗ almost surely. 
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APPENDIX D. SIOUX FALLS NETWORK PARAMETERS 

 

 

The Sioux Falls, SD network is commonly used throughout the dissertation in a number 

of chapters because of its convenience as a small network for testing traffic assignment 

and network design models.  While many variations exist (see Bar Gera, 2009) since it 

was first used by LeBlanc (1975), the parameters used for testing in the chapters are 

based on FIGURE D-1 and FIGURE D-2. 
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FIGURE D-1. Test Network – Sioux Falls, SD (Chen and Yang, 2004). 
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FIGURE D-2 Sioux Falls Link Parameters (Suwansirikul et al, 1987). 
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FIGURE D-3 Sioux Falls Travel Demand Matrix (Suwansirikul et al, 1987). 

 

To be consistent with numerical tests from the literature, the budget is set equal to 

5500 (in thousands of U.S. dollars), no upper bounds for ya are used (besides the one 

implied by the budget constraint for a single link), and only links 16, 17, 19, 20, 25, 26, 

29, 39, 48, and 74 are considered for expansion.  The construction cost function from 

eq. (3.4) is assumed to be a quadratic function (γ = 2).   In the literature, a rate of 0.001 

is used to convert the budget to travel time savings, so that 5500 is equivalent to 5.5 

VHT.   
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APPENDIX E. CONIDO TEST RESULTS 

 

 

The CONIDO solution using LSM for a range of Π basis functions is shown below. 
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TABLE E-1. Thirty Option Value ($M) Runs, P = 30 Sample Paths 

 
CONIDO Value Fixed Design Deferral Value 

# Π = 3 Π = 4 Π  = 5 Π  = 6 Π = 3 Π = 4 Π  = 5 Π  = 6 

1 23.53 28.25 30.67 31.16 23.00 25.77 27.21 29.23 

2 20.43 20.6 24.7 24.87 19.94 19.85 22.77 22.54 

3 19.73 20.66 23.32 21.94 19.73 20.72 22.63 22.85 

4 25.93 35.32 38.7 40.58 24.46 31.34 36.62 37.43 

5 20.19 20.8 20.18 21.45 20.21 19.73 19.87 20.45 

6 22.36 23.13 23.64 25.04 21.33 22.18 22.52 23.66 

7 25.32 26.13 29.43 30.79 25.39 25.33 27.52 28.43 

8 20.56 20.97 22.26 22.8 20.13 20.37 20.97 22.06 

9 21.05 24.06 23.24 25.25 20.34 22.95 22.35 24.04 

10 20.88 20.98 20.76 21.62 20.6 20.49 21.05 20.98 

11 20.5 21.95 21.82 21.64 19.73 20.62 20.78 20.11 

12 19.56 21.53 22.5 22.51 20.21 20.46 21.68 22.27 

13 19.73 21.07 21.31 22.04 19.73 19.73 20.44 20.29 

14 24.36 26.89 26.41 26.61 22.93 24.37 24.74 26.36 

15 23.63 25.37 26.1 27.83 22.46 23.43 24.38 25.65 

16 25.94 26.24 27.94 31.15 24.56 24.28 26.26 28.37 

17 20.03 19.73 21.1 20.78 19.84 19.76 19.73 20.16 

18 22.95 23.23 24.87 25.63 22.03 23.10 24.06 25.32 

19 19.83 19.73 20.08 19.73 19.73 19.73 19.99 19.73 

20 20.82 21.4 22.34 23.71 20.77 21.07 21.63 22.73 

21 23.26 24.69 23.98 25.75 22.30 23.49 23.29 24.12 

22 20.21 19.75 22.65 23.41 19.73 19.73 22.02 21.12 

23 21.02 22.07 22.15 23.21 20.55 20.74 21.49 22.45 

24 20.38 22.13 22.5 22.68 20.11 21.58 22.41 22.66 

25 19.76 21.47 23.36 24.72 19.73 20.26 20.93 22.31 

26 24.56 28.13 28.25 29.19 23.33 26.31 25.66 28.15 

27 22.55 25.9 26.6 25.53 21.32 23.61 24.42 24.3 

28 21.76 22.13 23.57 23.62 20.02 20.5 22.54 22.73 

29 20.15 22.35 22.09 22.36 20.77 20.88 22.05 22.22 

30 20.98 20.87 22.26 22.27 20.33 20.28 21.09 21.88 

Avg 21.73 23.25 24.29 25.00 21.18 22.09 23.10 23.82 

s.e. 0.36 0.62 0.70 0.77 0.30 0.48 0.60 0.67 

s.e.% 1.67% 2.66% 2.87% 3.10% 1.42% 2.19% 2.61% 2.82% 
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TABLE E-2. Thirty Option Values ($M), P = 300 Sample Paths 

 
CONIDO Value Fixed Design Deferral Value 

# Π = 3 Π = 4 Π  = 5 Π  = 6 Π = 3 Π = 4 Π  = 5 Π  = 6 

1 20.82 21.74 21.94 22.31 19.85 20.60 20.71 20.85 

2 20.53 21.00 21.08 21.97 19.73 20.28 20.22 20.77 

3 21.35 22.74 23.17 22.84 20.31 21.49 21.77 21.83 

4 21.23 22.30 23.87 25.76 20.26 21.04 22.56 23.93 

5 20.63 21.05 21.17 21.53 19.77 19.73 20.08 20.41 

6 21.21 22.04 22.60 23.05 20.09 20.90 21.06 21.71 

7 21.03 21.22 21.62 21.78 19.73 20.30 20.72 20.82 

8 21.28 21.32 21.47 21.50 20.04 20.60 20.61 20.78 

9 20.58 20.96 21.53 21.74 19.73 20.05 20.66 20.98 

10 21.35 21.89 21.90 22.21 20.23 20.99 20.89 21.3 

11 21.04 22.09 24.78 24.58 20.32 21.91 23.54 23.64 

12 21.08 21.75 22.00 22.34 20.15 20.73 21.12 21.22 

13 21.06 21.90 21.98 21.96 20.14 20.75 20.86 20.9 

14 21.06 21.46 21.62 21.79 20.07 20.48 20.70 21.11 

15 21.39 22.04 22.04 21.94 20.47 21.00 20.99 21.04 

16 21.57 22.14 22.44 22.38 20.54 21.02 21.00 21.05 

17 20.74 21.04 21.49 21.47 19.90 20.15 20.57 20.35 

18 22.7 25.48 26.75 28.80 21.44 22.98 24.13 24.29 

19 20.56 20.67 21.18 21.20 19.98 20.02 20.42 20.34 

20 19.73 19.77 19.96 20.26 19.73 19.73 19.77 19.73 

21 20.2 20.56 21.38 21.83 19.73 19.73 20.40 20.60 

22 21.58 21.87 23.09 23.75 20.57 20.78 21.83 22.82 

23 19.73 19.82 19.87 19.99 19.73 19.73 19.73 19.73 

24 21.24 23.25 23.74 26.03 20.36 22.49 22.23 23.19 

25 20.48 20.77 21.10 21.52 19.73 19.73 20.00 20.13 

26 20.03 20.52 20.62 20.73 19.92 19.87 20.01 20.28 

27 20.44 20.75 21.05 21.50 19.76 19.73 19.85 20.47 

28 19.73 20.32 20.16 20.31 19.73 19.73 19.73 19.90 

29 23.10 27.71 29.12 30.03 21.75 25.74 26.47 27.18 

30 21.03 20.85 21.84 22.21 19.83 20.17 20.36 20.68 

Avg 20.95 21.70 22.22 22.64 20.12 20.75 21.10 21.40 

s.e. 0.14 0.29 0.35 0.42 0.09 0.23 0.27 0.30 

s.e.% 0.65% 1.33% 1.59% 1.86% 0.44% 1.10% 1.27% 1.39% 



www.manaraa.com

220 

 

TABLE E-1 and TABLE E-2 empirically the rate of convergence for the algorithm as the 

number of simulation paths increases from 30 to 300, with the standard error reducing 

by half. 

 

TABLE E-3. Option Value ($M) as Function of Volatility and No. of Basis Functions Π 

 
CONIDO Value Fixed Design Deferral Value 

Volatility Π = 3 Π = 4 Π  = 5 Π  = 6 Π = 3 Π = 4 Π  = 5 Π  = 6 

5% 19.73 19.73 19.73 19.73 19.73 19.73 19.73 19.73 

25% 19.73 19.73 19.73 19.73 19.73 19.73 19.73 19.73 

30% 19.73 19.73 19.73 19.76 19.73 19.73 19.73 19.73 

35% 21.45 22.34 22.57 22.68 20.40 21.13 21.28 21.50 

40% 23.62 23.77 24.04 24.62 22.34 22.63 22.65 23.32 

45% 25.54 26.15 26.63 26.98 23.70 24.31 24.01 24.57 

 

 

As the volatility increases, the NIDO and deferral option values increase.  Note that the 

results of TABLE E-3 are from a single run of LSM simulation at P = 300, so there’s a 

standard error of 1.4 to 1.8 percent associated with the values as indicated in the 

variance analysis above. 

 

TABLE E-4. 35% Volatility Option Value ($M) as Function of Time Horizon T and Number of 

Basis Functions Π 

 
CONIDO Value Fixed Design Deferral Value 

Time Horizon (yrs) Π = 3 Π = 4 Π  = 5 Π  = 6 Π = 3 Π = 4 Π  = 5 Π  = 6 

0 19.73 19.73 19.73 19.73 19.73 19.73 19.73 19.73 

5 21 22 23 23 20 21 21 21 

10 44 77 110 133 37 64 83 83 

15 268,751 722,357 710,217 861,452 169,822 388,564 325,992 528,441 

20 294,324 757,493 741,339 894,429 187,540 407,078 502,526 578,667 
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As the time horizon increases, the option value increases exponentially at first, but 

appears to reach an asymptotic value of $894B by the time it’s 20 years.  The 

exponential increase is characteristic of the nonlinear congestion effects in the network.  

The asymptotic behavior is due to the zero drift and 6 percent discount rate having an 

effect on the future worth of system travel time savings.  Note that at such high levels of 

congestion in the future, more basis functions are needed to estimate the option value 

in the LSM algorithm. 

 

TABLE E-5. Summary of OLIDOS Solution for 35% Volatility Option Value ($M)  

h h1 h2 h3 h4 h5 HIJ  ∑ KIJ,  ($M) 

1 5 4 3 2 1 1 56.29 

2 5 4 3 1 2 1 50.96 

3 5 4 2 3 1 0 57.17 

4 5 4 2 1 3 0 51.54 

5 5 4 1 2 3 0 45.42 

6 5 4 1 3 2 0 45.46 

7 5 3 4 2 1 0 61.87 

8 5 3 4 1 2 0 56.40 

9 5 3 2 4 1 1 67.93 

10 5 3 2 1 4 4 66.66 

11 5 3 1 2 4 3 61.05 

12 5 3 1 4 2 0 56.15 

13 5 2 3 4 1 1 67.82 

14 5 2 3 1 4 4 66.68 

15 5 2 4 3 1 0 62.83 

16 5 2 4 1 3 1 56.61 

17 5 2 1 4 3 3 56.38 

18 5 2 1 3 4 3 60.86 

19 5 1 3 2 4 2 55.20 

20 5 1 3 4 2 2 50.48 

21 5 1 2 3 4 2 54.77 

22 5 1 2 4 3 2 50.58 

23 5 1 4 2 3 2 45.54 

24 5 1 4 3 2 2 45.48 
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25 4 5 3 2 1 0 54.61 

26 4 5 3 1 2 0 49.76 

27 4 5 2 3 1 0 55.50 

28 4 5 2 1 3 0 49.70 

29 4 5 1 2 3 0 43.59 

30 4 5 1 3 2 0 43.51 

31 4 3 5 2 1 0 57.80 

32 4 3 5 1 2 0 52.94 

33 4 3 2 5 1 0 61.92 

34 4 3 2 1 5 0 58.20 

35 4 3 1 2 5 0 51.71 

36 4 3 1 5 2 0 50.19 

37 4 2 3 5 1 0 62.83 

38 4 2 3 1 5 0 59.55 

39 4 2 5 3 1 0 59.53 

40 4 2 5 1 3 0 53.81 

41 4 2 1 5 3 0 50.34 

42 4 2 1 3 5 0 52.66 

43 4 1 3 2 5 0 45.58 

44 4 1 3 5 2 0 44.00 

45 4 1 2 3 5 0 45.23 

46 4 1 2 5 3 0 43.26 

47 4 1 5 2 3 0 40.61 

48 4 1 5 3 2 0 40.40 

49 3 4 5 2 1 0 64.83 

50 3 4 5 1 2 1 59.32 

51 3 4 2 5 1 0 68.84 

52 3 4 2 1 5 0 64.78 

53 3 4 1 2 5 0 58.80 

54 3 4 1 5 2 0 56.97 

55 3 5 4 2 1 0 66.83 

56 3 5 4 1 2 0 61.70 

57 3 5 2 4 1 0 72.99 

58 3 5 2 1 4 4 72.41 

59 3 5 1 2 4 3 66.81 

60 3 5 1 4 2 3 61.74 

61 3 2 5 4 1 0 78.67 

62 3 2 5 1 4 4 77.88 

63 3 2 4 5 1 0 76.32 

64 3 2 4 1 5 0 72.85 

65 3 2 1 4 5 3 72.18 
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66 3 2 1 5 4 4 74.26 

67 3 1 5 2 4 3 64.62 

68 3 1 5 4 2 0 59.62 

69 3 1 2 5 4 2 66.83 

70 3 1 2 4 5 3 64.45 

71 3 1 4 2 5 2 58.89 

72 3 1 4 5 2 0 56.85 

73 2 4 3 5 1 0 70.04 

74 2 4 3 1 5 0 66.66 

75 2 4 5 3 1 0 66.91 

76 2 4 5 1 3 0 60.99 

77 2 4 1 5 3 0 57.37 

78 2 4 1 3 5 0 59.80 

79 2 3 4 5 1 0 76.34 

80 2 3 4 1 5 0 72.87 

81 2 3 5 4 1 0 78.35 

82 2 3 5 1 4 4 77.89 

83 2 3 1 5 4 0 74.34 

84 2 3 1 4 5 3 72.23 

85 2 5 3 4 1 0 73.84 

86 2 5 3 1 4 4 72.46 

87 2 5 4 3 1 0 68.28 

88 2 5 4 1 3 0 62.24 

89 2 5 1 4 3 3 62.24 

90 2 5 1 3 4 3 66.60 

91 2 1 3 5 4 2 65.70 

92 2 1 3 4 5 0 64.01 

93 2 1 5 3 4 3 62.95 

94 2 1 5 4 3 2 58.78 

95 2 1 4 5 3 0 56.01 

96 2 1 4 3 5 2 58.40 

97 1 4 3 2 5 1 45.76 

98 1 4 3 5 2 1 43.60 

99 1 4 2 3 5 1 45.20 

100 1 4 2 5 3 1 43.15 

101 1 4 5 2 3 0 40.31 

102 1 4 5 3 2 1 40.35 

103 1 3 4 2 5 1 51.80 

104 1 3 4 5 2 1 49.55 

105 1 3 2 4 5 1 56.92 

106 1 3 2 5 4 1 59.24 
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107 1 3 5 2 4 3 56.28 

108 1 3 5 4 2 1 51.88 

109 1 2 3 4 5 1 55.94 

110 1 2 3 5 4 1 58.15 

111 1 2 4 3 5 0 50.53 

112 1 2 4 5 3 1 48.49 

113 1 2 5 4 3 1 50.87 

114 1 2 5 3 4 1 55.21 

115 1 5 3 2 4 2 52.90 

116 1 5 3 4 2 1 48.17 

117 1 5 2 3 4 2 52.54 

118 1 5 2 4 3 2 48.31 

119 1 5 4 2 3 2 43.26 

120 1 5 4 3 2 2 43.25 
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APPENDIX F. FIRE WEATHER DATA FOR CALIFORNIA 

 

Table F-1. OD Distances of the 12 Nodes used in Chapter 4 Numerical Test Measured in Google 

Earth (mi, rounded) 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0 200 90 290 140 180 370 330 260 90 100 140 

2 200 0 240 130 100 90 540 500 50 290 150 300 

3 90 240 0 360 210 250 300 260 290 90 100 60 

4 290 130 360 0 160 110 650 610 100 390 260 420 

5 140 100 210 160 0 50 500 460 140 230 130 270 

6 180 90 250 110 50 0 550 510 110 280 170 310 

7 370 540 300 650 500 550 0 50 590 280 400 240 

8 330 500 260 610 460 510 50 0 550 250 350 200 

9 260 50 290 100 140 110 590 550 0 350 200 360 

10 90 290 90 390 230 280 280 250 350 0 160 90 

11 100 150 100 260 130 170 400 350 200 160 0 160 

12 140 300 60 420 270 310 240 200 360 90 160 0 
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Table F-2. Air Tanker Travel Times across 

mph average speeds (hr) 

 
1 2 3 4

1 0.18 0.80 0.36 1.16

2 0.80 0.14 0.96 0.52

3 0.36 0.96 0.15 1.44

4 1.16 0.52 1.44 0.21

5 0.56 0.40 0.84 0.64

6 0.72 0.36 1.00 0.44

7 1.48 2.16 1.20 2.60

8 1.32 2.00 1.04 2.44

9 1.04 0.20 1.16 0.40

10 0.36 1.16 0.36 1.56

11 0.40 0.60 0.40 1.04

12 0.56 1.20 0.24 1.68

 

 

FIGURE F-1. Sample graphical output of data provided by FireFamilyPlus software.
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. Air Tanker Travel Times across 12 Nodes in Chapter 4 Numerical Test 

4 5 6 7 8 9 10 11 12

1.16 0.56 0.72 1.48 1.32 1.04 0.36 0.40 0.56

0.52 0.40 0.36 2.16 2.00 0.20 1.16 0.60 1.20

1.44 0.84 1.00 1.20 1.04 1.16 0.36 0.40 0.24

0.21 0.64 0.44 2.60 2.44 0.40 1.56 1.04 1.68

0.64 0.15 0.20 2.00 1.84 0.56 0.92 0.52 1.08

0.44 0.20 0.14 2.20 2.04 0.44 1.12 0.68 1.24

2.60 2.00 2.20 0.29 0.20 2.36 1.12 1.60 0.96

2.44 1.84 2.04 0.20 0.25 2.20 1.00 1.40 0.80

0.40 0.56 0.44 2.36 2.20 0.15 1.40 0.80 1.44

1.56 0.92 1.12 1.12 1.00 1.40 0.18 0.64 0.36

1.04 0.52 0.68 1.60 1.40 0.80 0.64 0.20 0.64

1.68 1.08 1.24 0.96 0.80 1.44 0.36 0.64 0.15

. Sample graphical output of data provided by FireFamilyPlus software.

 

12 Nodes in Chapter 4 Numerical Test assuming 250 

12 

0.56 

1.20 

0.24 

1.68 

1.08 

1.24 

0.96 

0.80 

1.44 

0.36 

0.64 

0.15 

 

. Sample graphical output of data provided by FireFamilyPlus software. 
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